Spatial manipulation of a precise number of viruses for host cell infection is essential for the extensive studies of virus pathogenesis and evolution. Albeit optical tweezers have been advanced to the atomic level via optical cooling, it is still challenging to efficiently trap and manipulate arbitrary number of viruses in an aqueous environment, being restricted by insufficient strength of optical forces and a lack of multifunctional spatial manipulation techniques. Here, by employing the virus hopping and flexibility of moving the laser position, multifunctional virus manipulation with a large trapping area is demonstrated, enabling single or massive (a large quantity of) virus transporting, positioning, patterning, sorting, and concentrating. The enhanced optical forces are produced by the confinement of light in engineered arrays of nanocavities by fine tuning of the interference resonances, and this approach allows trapping and moving viruses down to 40 nm in size. The work paves the way to efficient and precise manipulation of either single or massive groups of viruses, opening a wide range of novel opportunities for virus pathogenesis and inhibitor development at the single‐virus level.
We experimentally demonstrate transverse load and strain sensing based on a fiber optic Fabry-Perot interferometer (FPI) with special air cavity, which was created by fusion splicing single mode fiber (SMF), hollow core fiber (HCF) and several electrical arc discharges. The cavity height of this structure is higher than the cladding diameter of SMF so that it can sense transverse load with high sensitivity. The transverse load sensitivity of this air cavity FPI sensor is 1.31 nm∕N and about 5 times more sensitive compared to the current fiber tip interferometer (0.2526 nm∕N). Meanwhile, this sensor also can measure strain and the strain sensitivity of 3.29 pm∕με is achieved. In addition, the low temperature sensitivity (1.08 pm/°C) of the sensor can reduce the temperature-induced measurement error. This novel air cavity FPI can be developed and used as high-sensitivity transverse load and strain sensor with temperature-insensitive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.