In this work, the perovskite-type La0.67Sr0.33MnO3 (LSMO) oxide with perfect crystallinity was synthesized via sol-gel method and used as low-cost platinum-free counter electrodes (CEs) for dye-sensitized solar cell (DSSCs). The electrochemical characterizations indicate that LSMO electrode possesses excellent electrocatalytic activity for the I3− reduction and excellent electrochemical stability in I−/I3− electrolyte system. The DSSC based on this counter electrode achieves an energy conversion efficiency (η) of 6.62%, which approaches 92.6% of the level obtained by using Pt as CE (η = 7.15%). Theperovskite-type oxide is low-cost and can be massively produced via sol-gel method which is superior to the solvothermal method. This work makes an attempt to develop potential counter electrode materials in perovskite-type oxides, which can help reduce the cost of DSSCs and thereby encourage their fundamental research and commercial applications.
In this work, La0.5Sr0.5CoO3 (LSCO) perovskite oxide with perfect crystallinity was successfully synthesized via a sol–gel method and then used as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The DSSCs with LSCO CEs exhibited excellent electrocatalytic activity for the triiodide reduction and yielded a power conversion efficiency of 7.17%, which is greater than that of the Pt electrode (7.06%). Compared with the hydrothermal method and solvothermal method, sol–gel method is more suitable for large scale preparation. This work should open up a new class of CE materials for low-cost and high-efficiency DSSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.