Driven by the need for lightweight head-mounted displays, we present the design of an ultralight and compact projection lens for a head-mounted projective display (HMPD). An HMPD consists of a pair of miniature projection lenses, beam splitters, and miniature displays mounted on the helmet and retroreflective sheeting materials placed strategically in the environment. The HMPD has been proposed recently as an alternative modality for three-dimensional visualization. After demonstrating the concept, building a first-generation custom-designed prototype, and investigating perception issues and application potentials, we designed an ultralight and compact projective lens with a diffractive optical element (DOE), plastic components, and aspheric surfaces for the next-generation prototype. The key contribution here lies in the conception, optimization, and assessment of the projection optics. Thus a brief review of the HMPD technology and related research is followed by a detail discussion of the conception and optimization of the ultralight and high-performance projection optics. The design of the DOE will be particularly described in detail. Finally, the diffraction efficiency of the DOE will be evaluated, and the overall performance of the optics will be assessed in both object space for the optical designer and visual space for possible end-users of the technology.
We are proposing a novel optical see-through head-worn
The virtuality continuum. 2 A 360-degree ARC with capability for 3D sound and haptic devices. 3 Users within the ARC have turned their body toward a real silvered ball painted with optical material and are engaged in an augmented reality experience with a remote user. Projects in VR 4 March/April 2003 4 (a) A user experiencing augmented reality (in the ARC) on a Human Patient Simulator used in training medics on various emergency procedures. (b) A user standing in the ARC studies a floating 3D model of the combined mandible and trachea of a (c) segmented 3D visible human data set.
A recent advancement was achieved in the integration and miniaturization of a binocular head-worn projection display (HWPD) conceived for fully mobile users. The devised display, referred to as Mobile HWPD (M-HWPD), offers see-through capability through custom-designed, light-weight projection optics and an integrated commercial-off-the-shelf (COTS) retro-reflective screen to display full color stereoscopic rendered images augmenting the real world. Moreover, the light-weight optical device (i.e., approximately 8g per eye) has the ability to project clear images at three different locations within near- or far-field observation depths without loss of image quality. In this paper, we first demonstrate the miniaturization of the optics, the optical performance, and the integration of these components with the retro-reflective screen to produce an M-HWPD prototype. We then show results that demonstrate the feasibility of superimposing computer-generated images on a real outdoor scene with the M-HWPD.
Visualizing information in three dimensions provides an increased understanding of the data presented. Furthermore, the ability to manipulate or interact with data visualized in three dimensions is superior. Within the medical community, augmented reality is being used for interactive, three-dimensional (3D) visualization. This type of visualization, which enhances the real world with computer generated information, requires a display device, a computer to generate the 3D data, and a system to track the user. In addition to these requirements, however, the hardware must be properly integrated to insure correct visualization. To this end, we present components of an integrated augmented reality system consisting of a novel head-mounted projective display, a Linux-based PC, and a commercially available optical tracking system. We demonstrate the system with the visualization of anatomical airways superimposed on a human patient simulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.