A localized phosphate distribution (LPD) was introduced for the first time into a porous TiO 2 nanostructure by using a biotemplate synthetic strategy, that is, Staphylococcus aureus (S. aureus)-assisted in situ phosphate transfer. The resulting novel nanostructures have shown remarkable enhancement of photoactivities for both selective dye degradation and photoelectrochemical water reduction. Mechanistic understanding reveals that improved separation, directional transport, and less limited interface transfer of the photogenerated electron and hole may be achieved simultaneously within the LPD-modified TiO 2 nanostructures because of the existence of the confined negative surface electrostatic field (NSEF) and the spatially oriented upward band bending (UBB). On the contrary, a homogeneous phosphate distribution (HPD) will greatly increase electron interface transfer resistance, which will cause the increase of recombination in bulk. The most important inspiration we can obtain herein is that a comprehensive consideration of the influence of nanostructure on all of the critical aspects of the carrier's dynamics is needed during the rational design and construction of the advanced nanostructured photocatalyst systems. Considering the available resources for the synthesis and strong covalent interaction of phosphate with many other transition metal cations, the authors think that the novel strategy for a simultaneous optimization of the dynamic processes of the charge pairs by introducing LPD is promising for several applications including photocatalysis, photoelectrochemical hydrogen production, and solar cell.
The process of suspension polymerization was utilized to create acrylate resin microspheres with mesh numbers of 140–200 μm and particle sizes of 100 μm for implementation in mesh coating technology. The copolymer of methyl methacrylate (MMA) and methyl acrylate (MA) served as the primary polymer, with dibenzoyl peroxide (DBPO) functioning as the initiator, and a mixture of calcium carbonate and deionized water served as the dispersion medium. The surface morphology of the synthesized microspheres was analyzed through Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) to confirm successful synthesis. The optimal reaction conditions for the synthesis of these microspheres were determined to be a dispersant dosage of 30 g of calcium carbonate with a monomer ratio of 4:1, a reaction time of 1 h, an initiator dosage of 1.2 g of BPO, and a reaction temperature of approximately 75–80 C, resulting in microspheres with a regular spherical shape and smooth surface.
Owing to the outdated content and one-sided assessment method in the comprehensive experimental course of applied chemistry, the development of students' innovative ability and independent learning is limited. In this article, the course is systematically designed based on the OBE (Outcome-based education) concept to solve these problems. Firstly, the innovative experimental projects are designed by integrating teachers' achievements in scientific research. Hence, the students will experience the frontier and innovative technology in a scientific way. Secondly, some design, exploring and challenging projects are carried out during teaching and learning process to stimulate students' learning interest and self-learning awareness. And through these projects, students' innovative ability and scientific spirit are cultivated. Thirdly, the process assessment is highlighted, and the outcome-oriented assessment mode is as well as established to evaluate the achievement of course objectives. Eventually, the teaching scheme is optimized and expected to promote the development of the ability-oriented training mode in experimental course by applying the evaluation results of the course objectives achievement and the continuous improvement principle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.