Objective: To evaluate the safety and therapeutic efficacy of target percutaneous laser disc decompression (T-PLDD) for the treatment of lumbar disc herniation. Background data: PLDD using the Nd:YAG laser has been regarded as an effective alternative treatment for disc herniation. However, all the previous studies were concentrated on vaporizing the nucleus pulposus in the intervertebral space. We hypothesize that insertion of the needle into the extruded part of the nucleus pulposus will decrease its volume and provide superior clinical effects compared to therapies that decrease the volume of the intradiscal nucleus pulposus. Materials and methods: A total of 25 patients suffering from posterolateral extruded but nonsequestered lumbar intervertebral disc herniation were treated with T-PLDD. After treatment, the patients were followed up and the therapeutic effect was assessed at 1, 3, 6, and 12 months using the modified MacNab criteria. Results: The success rate was 80.0% (18 of 25), 88.0% (22 of 25), 92.0% (23 of 25), and 92.0% (23 of 25) at 1, 3, 6, and 12 months respectively. No serious complications occurred in any of the patients. Furthermore, we did not observe any neurological sequelae. Conclusions: T-PLDD can significantly decrease pain and improve function of patients who have extruded but nonsequestered lumbar intervertebral disc herniation.
This study aimed to investigate the effect of dexmedetomidine (DEX) on osteosarcoma (OS) cell line MG63 and to explore the possible relationship between DEX and miR-520-3p in OS. The results showed that DEX could upregulate miR-520-3p, which directly targeted . Additionally, miR-520-3p also inhibited MG63 cell proliferation and migration, promoted apoptosis, and suppressed protein expressions of AKT, p-AKT, p-mTOR, and p-ERK1/2. DEX can inhibit OS cell proliferation and migration and promote apoptosis by upregulating the expression level of miR-520a-3p. DEX may serve as a potential therapeutic agent in OS treatment, and miR-520a-3p may be a potential target in the therapy of OS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.