Structural colored nanocomposites with photonic liquid crystal structures are desirable owing to their excellent optical performances, unique structural features and intelligent responsive behaviors.
Wood is a versatile raw material valued highly for its abundance, low cost, biocompatibility, and natural composition. It has drawn increasing interest for its uses in green electronics, biological devices, and energy storage. Meanwhile, its potential application in water purification has not been adequately explored. This study reports the development of a wood-based filter decorated with silver nanoparticles (Ag NPs) and its application for water purification. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) confirmed the successful loading of Ag NPs on the surfaces of the wood mesoporous network. The effects of Ag NP content and filter thickness on the decomposition of methylene blue (MB) and bacterial removal were evaluated. The prepared Ag/wood filter can remove more than 98.5% of MB via physical adsorption and catalytic degradation. After the Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) suspensions passed through the Ag/wood filter, the inactivation and removal of E. coli and S. aureus reached up to 6 and 5.2 orders of magnitude, respectively. The findings demonstrate that the prepared Ag/wood filter, which is biomass based and easy to handle, has a potential for point-of-use water purification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.