Polysaccharides from Morchella esculenta have been proven to be functional and helpful for humans. The purpose of this study was to investigate the chemical structure and anti-proliferating and antitumor activities of a Morchella esculenta polysaccharide (MEP) extracted by pulsed electric field (PEF) in submerged fermentation. The endo-polysaccharide was separated and purified by column chromatography and Gel permeation chromatography, and analyzed by gas chromatography. The MEP with an average molecular weight of 81,835 Da consisted of xylose, glucose, mannose, rhamnose and galactose at the ratio of 5.4:5.0:6.5:7.8:72.3. Structure of MEP was further analyzed by Fourier-transform infrared spectroscopy and 1H and 13C liquid-state nuclear magnetic resonance spectroscopy. Apoptosis tests proved that MEP could inhibit the proliferation and growth of human colon cancer HT-29 cells in a time- and dose-dependent manner within 48 h. This study provides more information on chemical structure of anti-proliferating polysaccharides isolated from Morchella esculenta.
Star anise essential oil (SAEO) is a plant essential oil with good antibacterial activity, but its applications are limited due to its high volatility, strong smell, and unstable physical and chemical properties. The effect of selective encapsulation of SAEO by hydroxypropyl-β-cyclodextrin (HPCD) on its compositions, volatility stability and antibacterial activity was investigated. The GC-MS results indicated that the compositions reduced and content of the compositions of SAEO changed after encapsulation. Most of the components in SAEO were successfully encapsulated by HPCD, which can be supported by data from FTIR and 1H NMR. According to the molecular modeling results, the three guest molecules (trans-anethole, estragole and trans-foeniculin) were all docked in the cavity of HPCD on the isoallyl (or allyl) side. The volatile stability of SAEO before and after encapsulation was evaluated by electronic nose, and the results confirmed that encapsulation significantly reduced the irritating smell of SAEO and makes the clathrate have a sustained release effect. Furthermore, in the antibacterial test, the selective encapsulation of HPCD improved the inhibition effect of SAEO on Rhizopus stolonoifer, Saccharomyces cerevisiae, and E. coli and its antibacterial stability in 24 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.