Tacrolimus is an immunosuppressive drug with a narrow therapeutic index and larger interindividual variability. We identified genetic variants to predict tacrolimus exposure in healthy Korean males using machine learning algorithms such as decision tree, random forest, and least absolute shrinkage and selection operator (LASSO) regression. rs776746 (CYP3A5) and rs1137115 (CYP2A6) are single nucleotide polymorphisms (SNPs) that can affect exposure to tacrolimus. A decision tree, when coupled with random forest analysis, is an efficient tool for predicting the exposure to tacrolimus based on genotype. These tools are helpful to determine an individualized dose of tacrolimus.
Purpose Advanced energy devices, including electrosurgical bipolar systems or ultrasonic shears, are widely used in various surgeries. An electrosurgical bipolar device allows surgeons to grasp and dissect tissues, as well as simultaneously ligate and cut vessels and lymphatics during surgery. This study aimed to evaluate the effects of advanced bipolar energy devices on the reduction in seroma formation during mastectomy, axillary staging, and/or reconstruction. Methods This prospective randomized clinical trial with a 1:1 ratio compared the use of an electrosurgical bipolar device, LigaSure TM (LGS), against conventional cut-and-ligate techniques in mastectomy with axillary procedures for patients with breast cancer. A total of 82 patients with breast cancer who underwent definitive surgery were enrolled in this study. The primary endpoint was the total drainage volume after surgery. Results The clinicopathological characteristics of the two groups were not significantly different. The total postoperative drainage volume was significantly lower in the LGS group than in the control group (756.26 mL vs. 1,167.74 mL, p = 0.009). The actual postoperative drainage volume and duration also decreased significantly in the LGS group compared with those in the control group (all p < 0.05). The rate of postoperative complications was lower in the LGS group than in the control group (9.8% vs. 27.5%, p = 0.05). Conclusion Electrosurgical bipolar devices showed better performance in terms of decreasing postoperative drainage during mastectomy and axillary staging and/or reconstruction.
We aimed to determine the effects of deep learning-based reconstruction (DLR) on radiomic features obtained from cardiac computed tomography (CT) by comparing with iterative reconstruction (IR), and filtered back projection (FBP). A total of 284 consecutive patients with 285 cardiac CT scans that were reconstructed with DLR, IR, and FBP, were retrospectively enrolled. Radiomic features were extracted from the left ventricular (LV) myocardium, and from the periprosthetic mass if patients had cardiac valve replacement. Radiomic features of LV myocardium from each reconstruction were compared using a fitting linear mixed model. Radiomics models were developed to diagnose periprosthetic abnormality, and the performance was evaluated using the area under the receiver characteristics curve (AUC). Most radiomic features of LV myocardium (73 of 88) were significantly different in pairwise comparisons between all three reconstruction methods (P < 0.05). The radiomics model on IR exhibited the best diagnostic performance (AUC 0.948, 95% CI 0.880–1), relative to DLR (AUC 0.873, 95% CI 0.735–1) and FBP (AUC 0.875, 95% CI 0.731–1), but these differences did not reach significance (P > 0.05). In conclusion, applying DLR to cardiac CT scans yields radiomic features distinct from those obtained with IR and FBP, implying that feature robustness is not guaranteed when applying DLR.
Objective This study aimed to develop and validate models using radiomics features on a native T1 map from cardiac magnetic resonance (CMR) to predict left ventricular reverse remodeling (LVRR) in patients with nonischemic dilated cardiomyopathy (NIDCM). Materials and Methods Data from 274 patients with NIDCM who underwent CMR imaging with T1 mapping at Severance Hospital between April 2012 and December 2018 were retrospectively reviewed. Radiomic features were extracted from the native T1 maps. LVRR was determined using echocardiography performed ≥ 180 days after the CMR. The radiomics score was generated using the least absolute shrinkage and selection operator logistic regression models. Clinical, clinical + late gadolinium enhancement (LGE), clinical + radiomics, and clinical + LGE + radiomics models were built using a logistic regression method to predict LVRR. For internal validation of the result, bootstrap validation with 1000 resampling iterations was performed, and the optimism-corrected area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI) was computed. Model performance was compared using AUC with the DeLong test and bootstrap. Results Among 274 patients, 123 (44.9%) were classified as LVRR-positive and 151 (55.1%) as LVRR-negative. The optimism-corrected AUC of the radiomics model in internal validation with bootstrapping was 0.753 (95% CI, 0.698–0.813). The clinical + radiomics model revealed a higher optimism-corrected AUC than that of the clinical + LGE model (0.794 vs. 0.716; difference, 0.078 [99% CI, 0.003–0.151]). The clinical + LGE + radiomics model significantly improved the prediction of LVRR compared with the clinical + LGE model (optimism-corrected AUC of 0.811 vs. 0.716; difference, 0.095 [99% CI, 0.022–0.139]). Conclusion The radiomic characteristics extracted from a non-enhanced T1 map may improve the prediction of LVRR and offer added value over traditional LGE in patients with NIDCM. Additional external validation research is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.