Sonic drilling technology uses the longitudinal vibration of a drill string to realize fast and effective drilling. By setting the top and bottom boundary conditions of the drill string during drilling, a dynamic model of flexible sonic string percussive drilling is established in this article. At a certain drilling depth, with the excitation frequencies as the control parameters, the maximum impact force and rock breaking energy utilization rate are used to evaluate the rock breaking capability of the sonic drilling system under the linear bit–rock model. A surface diagram of the maximum breaking force reached within the working frequencies and at varying drilling depths is obtained. The curve graph of the rock breaking energy utilization rate varying with drilling depth under the first six orders of resonance is also calculated. Analysing the influence of changing drilling parameters on the rock breaking capability of sonic drilling systems can provide theoretical guidance for the actual drilling process.
In mammals, female fertility is determined by the outcome of follicular development (ovulation or atresia). The TGF-β/SMAD signaling pathway is an important regulator of this outcome. However, the molecular mechanism by which the TGF-β/SMAD signaling pathway regulates porcine follicular atresia has not been fully elucidated. Microrchidia family CW-type zinc finger 2 (MORC2) is anovel epigenetic regulatory protein widely expressed in plants, nematodes, and mammals. Our previous studies showed that MORC2 is a potential downstream target gene of the TGF-β/SMAD signaling pathway. However, the role of MORC2 in porcine follicular atresia is unknown. To investigate this, qRT-PCR, western blotting, and TdT-mediated dUTP nick-end labeling were performed. Additionally, the luciferase activity assay was conductedto confirm that the TGF-β/SMAD signaling pathway regulates MORC2. Our results demonstrate that MORC2 is animportant anti-apoptotic molecule that prevents porcine follicular atresia via a pathway involving mitochondrial apoptosis, not DNA repair. Notably, this studyrevealsthat the TGF-β/SMAD signaling pathway inhibits porcine granulosa cell apoptosis by up-regulating MORC2. The transcription factor SMAD4 regulated the expression of MORC2by binding to its promoter. Our results will help to reveal the mechanism underlying porcine follicular atresia and improve the reproductive efficiency of sows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.