Sparsomycin is an antibiotic that targets the peptidyl transferase center of the ribosome and has the ability to promote ribosomal translocation in the absence of EF-G and GTP. Here we show that changes in the configurations at the two chiral centers of sparsomycin, especially at the chiral carbon, can greatly affect its capability to promote ribosomal translocation. More importantly, the incorporation of the pseudo-uracil moiety of sparsomycin into linezolid through a covalent linkage conferred on linezolid derivatives the ability to promote translocation, thus indicating the importance of interactions between this pseudo-uracil moiety, rRNA, and tRNA for promoting translocation. In addition, these translocation promoters can also effectively inhibit spontaneous reverse translocation; this suggests that they might promote forward translocation by trapping the ribosome in the post-translocation state and shifting the equilibrium between the pre- and post-translocation ribosome in the forward direction.
BackgroundThe fiber quality and resistance traits of Gossypium barbadense are considerably better than that of other Gossypium species. Simple sequence repeats (SSRs) are user friendly, low cost markers widely used in genetic studies. However, most SSRs have been developed from G. hirsutum, G. arboreum, and G. raimondii; no genome-wide SSRs have been developed from G. barbadense.The de novo sequences of G. barbadense cv. Xinhai21 were utilized to develop SSR markers and scanned to detect SSRs using the MIcroSAtellite (http://pgrc.ipk-gatersleben.de/misa/) identification tool. And then in silico PCR analysis was conducted to evaluate these primers polymorphism in five Gossypium species.ResultsIn total, 85,582 SSRs were identified with different motifs. 153,560 primer pairs were successfully designed for 73,419 SSRs. In silico analysis, we found that 8,466 primer pairs of 3,288 SSRs yielded one product (monomorphic) simultaneously in five Gossypium species. two Gossypium species (30 G. hirsutum and 27 G. barbadense accessions) were successfully separated by 300 primer pairs with the polymorphism information content (PIC) ranging from 0.00 to 0.93. ConclusionThese newly developed SSR markers will be helpful for the construction of genetic linkage maps, genetic diversity analyses, QTL mapping, and molecular breeding of Gossypium species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.