Due to the limited perceptual field, convolutional neural networks (CNN) only extract local temporal features and may fail to capture long-term dependencies for EEG decoding. In this paper, we propose a compact Convolutional Transformer, named EEG Conformer, to encapsulate local and global features in a unified EEG classification framework. Specifically, the convolution module learns the low-level local features throughout the one-dimensional temporal and spatial convolution layers. The self-attention module is straightforwardly connected to extract the global correlation within the local temporal features. Subsequently, the simple classifier module based on fullyconnected layers is followed to predict the categories for EEG signals. To enhance interpretability, we also devise a visualization strategy to project the class activation mapping onto the brain topography. Finally, we have conducted extensive experiments to evaluate our method on three public datasets in EEGbased motor imagery and emotion recognition paradigms. The experimental results show that our method achieves state-of-theart performance and has great potential to be a new baseline for general EEG decoding. The code has been released in https://github.com/eeyhsong/EEG-Conformer.
Due to the individual difference, EEG signals from other subjects (source) can hardly be used to decode the mental intentions of the target subject. Although transfer learning methods have shown promising results, they still suffer from poor feature representation or neglect long-range dependencies. In light of these limitations, we propose Global Adaptive Transformer (GAT), an domain adaptation method to utilize source data for cross-subject enhancement. Our method uses parallel convolution to capture temporal and spatial features first. Then, we employ a novel attention-based adaptor that implicitly transfers source features to the target domain, emphasizing the global correlation of EEG features. We also use a discriminator to explicitly drive the reduction of marginal distribution discrepancy by learning against the feature extractor and the adaptor. Besides, an adaptive center loss is designed to align the conditional distribution. With the aligned source and target features, a classifier can be optimized to decode EEG signals. Experiments on two widely used EEG datasets demonstrate that our method outperforms state-of-the-art methods, primarily due to the effectiveness of the adaptor. These results indicate that GAT has good potential to enhance the practicality of BCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.