The containment liner plate (CLP) in a nuclear power plant is the most critical part of the structure of a power plant, as it prevents the radioactive contamination of the surrounding area. This paper presents feasibility of structural health monitoring (SHM) and an elastic wave tomography method based on ultrasonic guided waves (GW), for evaluating the integrity of CLP. It aims to check the integrity for a dynamic response to a damaged isotropic structure. The proposed SHM technique relies on sensors and, therefore, it can be placed on the structure permanently and can monitor either passively or actively. For applying this method, a suitable guided wave mode tuning is required to verify wave propagation. A finite element analysis (FEA) is performed to figure out the suitable GW mode for a CLP by considering geometric and material condition. Furthermore, elastic wave tomography technique is modified to evaluate the CLP condition and its visualization. A modified reconstruction algorithm for the probabilistic inspection of damage tomography algorithm is used to quantify corrosion defects in the CLP. The location and shape of the wall-thinning defects are successfully obtained by using elastic GW based SHM. Making full use of verified GW mode to Omni-directional transducer, it can be expected to improve utilization of the SHM based evaluation technique for CLP.
In this study, a modified imaging algorithm was implemented to improve the imaging accuracy for defects located on a structure. Based on analysis of the Lamb wave mode, a guided ultrasonic wave inspection technique was applied, which was able to illustrate images of defects in a 6 mm steel plate simulating containment liner plate (CLP) in nuclear power plants. The dominant Lamb wave mode was determined through short-time Fourier transform waveform analysis and imaging verification. Following tomography verification, limitations of the antisymmetric mode in the thick steel plate were identified. In addition, a modified shape factor, based on the energy distribution factor according to the beam pattern and beam width, was suggested for field applications and improved imaging accuracy. Results of the analysis revealed a beam skewing phenomenon for the Lamb wave mode. In the case of S0 2.7 MHz·mm, skewing as well as distortion effects are not observed in the experiment, while the S0 modes at 2.64 and 2.74 MHz·mm show either of them. Considering skewing width, the size of the shape function was modified. Application of the modified shape function allows us to obtain more accurate image to actual defect shape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.