Hearing loss and auditory prostheses can alter auditory processing by inducing large pitch mismatches and broad pitch fusion between the two ears. Similar to integration of incongruent inputs in other sensory modalities, the mismatched, fused pitches are often averaged across ears for simple stimuli. Here, we measured parallel effects on complex stimulus integration using a new technique based on vowel classification in five bilateral hearing aid users and eight bimodal cochlear implant users. Continua between five pairs of synthetic vowels were created by varying the first formant spectral peak while keeping the second formant constant. Comparison of binaural and monaural vowel classification functions for each vowel pair continuum enabled visualization of the following frequency-dependent integration trends: (1) similar monaural and binaural functions, (2) ear dominance, (3) binaural averaging, and (4) binaural interference. Hearing aid users showed all trends, while bimodal cochlear implant users showed mostly ear dominance or interference. Interaural pitch mismatches, frequency ranges of binaural pitch fusion, and the relative weightings of pitch averaging across ears were also measured using tone and/or electrode stimulation. The presence of both large interaural pitch mismatches and broad pitch fusion was not sufficient to predict vowel integration trends such as binaural averaging or interference. The way that pitch averaging was weighted between ears also appears to be important for determining binaural vowel integration trends. Abnormally broad spectral fusion and the associated phoneme fusion across mismatched ears may underlie binaural speech perception interference observed in hearing aid and cochlear implant users.
Binaural pitch fusion is the fusion of dichotically presented tones that evoke different pitches between the ears. In normal-hearing (NH) listeners, the frequency range over which binaural pitch fusion occurs is usually <0.2 octaves. Recently, broad fusion ranges of 1-4 octaves were demonstrated in bimodal cochlear implant users. In the current study, it was hypothesized that hearing aid (HA) users would also exhibit broad fusion. Fusion ranges were measured in both NH and hearing-impaired (HI) listeners with hearing losses ranging from mild-moderate to severe-profound, and relationships of fusion range with demographic factors and with diplacusis were examined. Fusion ranges of NH and HI listeners averaged 0.17 ± 0.13 octaves and 1.7 ± 1.5 octaves, respectively. In HI listeners, fusion ranges were positively correlated with a principal component measure of the covarying factors of young age, early age of hearing loss onset, and long durations of hearing loss and HA use, but not with hearing threshold, amplification level, or diplacusis. In NH listeners, no correlations were observed with age, hearing threshold, or diplacusis. The association of broad fusion with early onset, long duration of hearing loss suggests a possible role of long-term experience with hearing loss and amplification in the development of broad fusion.
Bilateral CI listeners have abnormally broad fusion, similar to hearing aid and bimodal CI listeners. This broad fusion may explain the variability of binaural benefits for speech perception in quiet and in noise in bilateral CI users.
Both bimodal cochlear implant and bilateral hearing aid users can exhibit broad binaural pitch fusion, the fusion of dichotically presented tones over a broad range of pitch differences between ears [Reiss, Ito, Eggleston, and Wozny. (2014). J. Assoc. Res. Otolaryngol. 15(2), 235-248; Reiss, Eggleston, Walker, and Oh. (2016). J. Assoc. Res. Otolaryngol. 17(4), 341-356; Reiss, Shayman, Walker, Bennett, Fowler, Hartling, Glickman, Lasarev, and Oh. (2017). J. Acoust. Soc. Am. 143(3), 1909-1920]. Further, the fused binaural pitch is often a weighted average of the different pitches perceived in the two ears. The current study was designed to systematically measure these pitch averaging phenomena in bilateral hearing aid users with broad fusion. The fused binaural pitch of the reference-pair tone combination was initially measured by pitch-matching to monaural comparison tones presented to the pair tone ear. The averaged results for all subjects showed two distinct trends: (1) The fused binaural pitch was dominated by the lower-pitch component when the pair tone was either 0.14 octaves below or 0.78 octaves above the reference tone; (2) pitch averaging occurred when the pair tone was between the two boundaries above, with the most equal weighting at 0.38 octaves above the reference tone. Findings from two subjects suggest that randomization or alternation of the comparison ear can eliminate this asymmetry in the pitch averaging range. Overall, these pitch averaging phenomena suggest that spectral distortions and thus binaural interference may arise during binaural stimulation in hearing-impaired listeners with broad fusion.
Recent evidence has shown that auditory information may be used to improve postural stability, spatial orientation, navigation, and gait, suggesting an auditory component of self-motion perception. To determine how auditory and other sensory cues integrate for self-motion perception, we measured motion perception during yaw rotations of the body and the auditory environment. Psychophysical thresholds in humans were measured over a range of frequencies (0.1–1.0 Hz) during self-rotation without spatial auditory stimuli, rotation of a sound source around a stationary listener, and self-rotation in the presence of an earth-fixed sound source. Unisensory perceptual thresholds and the combined multisensory thresholds were found to be frequency dependent. Auditory thresholds were better at lower frequencies, and vestibular thresholds were better at higher frequencies. Expressed in terms of peak angular velocity, multisensory vestibular and auditory thresholds ranged from 0.39°/s at 0.1 Hz to 0.95°/s at 1.0 Hz and were significantly better over low frequencies than either the auditory-only (0.54°/s to 2.42°/s at 0.1 and 1.0 Hz, respectively) or vestibular-only (2.00°/s to 0.75°/s at 0.1 and 1.0 Hz, respectively) unisensory conditions. Monaurally presented auditory cues were less effective than binaural cues in lowering multisensory thresholds. Frequency-independent thresholds were derived, assuming that vestibular thresholds depended on a weighted combination of velocity and acceleration cues, whereas auditory thresholds depended on displacement and velocity cues. These results elucidate fundamental mechanisms for the contribution of audition to balance and help explain previous findings, indicating its significance in tasks requiring self-orientation. NEW & NOTEWORTHY Auditory information can be integrated with visual, proprioceptive, and vestibular signals to improve balance, orientation, and gait, but this process is poorly understood. Here, we show that auditory cues significantly improve sensitivity to self-motion perception below 0.5 Hz, whereas vestibular cues contribute more at higher frequencies. Motion thresholds are determined by a weighted combination of displacement, velocity, and acceleration information. These findings may help understand and treat imbalance, particularly in people with sensory deficits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.