Background In this era of Information Communication Technology, a high-quality working environment is essential to the occupants. Providing quantity rather the quality of work environments is very common in most of the least developed countries, including Tanzania. Existing research asserts that poor indoor environmental quality such as lighting has a detrimental effect on human health, and in case of the office working population, it also affects their work performance. This study aims to analyze the effects of the lighting quality on working efficiency of workers in Tanzania. Methods Four representative offices from the administration building at Mbeya University of Science and Technology were investigated from June to September 2018. The customized questionnaire survey tool was administered to the randomly selected occupants to survey their perceptions about the quality of lighting in their workplace and its influence on their health and work efficiency. Physical observation and illuminance distribution measurements were also conducted. Results The statistical analysis indicates that the majority of the occupants are less satisfied with the lighting quality in their working environment, and some respondents reported that it significantly affected their work efficiency and wellbeing. The average desk illuminance and uniformity level were found to be below the recommended values of the Chartered Institution of Building Services Engineers (CIBSE) and the International Commission on lighting (CIE). Conclusion Despite the suggested improvement measures, this research emphasizes that poorly articulated work environment can adversely affect the productivity and work efficiency of the workers. The workers in such condition are also exposed to occupational diseases. Thus, providing a healthy work environment should be a fundamental right of the workers.
Compared with the gold standard, polysomnography (PSG), and silver standard, actigraphy, contactless consumer sleep-tracking devices (CCSTDs) are more advantageous for implementing large-sample and long-period experiments in the field and out of the laboratory due to their low price, convenience, and unobtrusiveness. This review aimed to examine the effectiveness of CCSTDs application in human experiments. A systematic review and meta-analysis (PRISMA) of their performance in monitoring sleep parameters were conducted (PROSPERO: CRD42022342378). PubMed, EMBASE, Cochrane CENTRALE, and Web of Science were searched, and 26 articles were qualified for systematic review, of which 22 provided quantitative data for meta-analysis. The findings show that CCSTDs had a better accuracy in the experimental group of healthy participants who wore mattress-based devices with piezoelectric sensors. CCSTDs’ performance in distinguishing waking from sleeping epochs is as good as that of actigraphy. Moreover, CCSTDs provide data on sleep stages that are not available when actigraphy is used. Therefore, CCSTDs could be an effective alternative tool to PSG and actigraphy in human experiments.
Underexposure to daylight in windowless factories puts assembly-line workers at risk of health problems. To investigate whether the advance light exposure in the early morning and during the lunch break benefits workers’ productivity and night-time sleep, a within-subject experiment was conducted in a factory. Four experimental lighting interventions were provided twice a day before work (8:30–9:00 and 12:00–12:30) for consecutive five workdays, covering two light levels (1440 lx vs. 70 lx), each with two correlated colour temperatures (CCTs) (5300 K vs. 3300 K), plus an additional benchmark dark exposure (4 lx). Participants’ subjective alertness and night-time sleep were measured daily, and the chronotype was monitored once a week. Results showed that a higher illuminance was correlated with increased subjective work alertness and higher sleep efficiency, while a lower CCT slightly improved alertness. The subjective work alertness and sleep efficiency under the two advance bright light exposures were higher than those under the dark exposure, and the responses of subjective alertness were more pronounced in the afternoon than those in the morning. Yet, the chronotype had no evident change in different lighting interventions. The present study indicated that the daily advance light exposure before work could have a delayed effect on participants’ alertness and sleep quality.
This paper attempts to realize the balance between humans and ecology in designing the nighttime light environment of urban parks by clarifying the influence of nighttime artificial light on the ecosystem of urban parks. Firstly, we reviewed the effects of nighttime artificial light on individual predation and reproduction of animals and personal growth and reproduction of plants. Secondly, we discuss the impact of individual changes caused by artificial lighting on ecosystem function at the ecosystem and analyze its advantages and disadvantages. The results showed that nighttime artificial light had a double-sided impact on the ecosystem, which would hurt the ecosystem function, but had a positive effect on the green space, which lacked natural light and had high plant density. This paper focuses on the areas with increased application of artificial lighting and rich species of animals and plants in night cities, such as urban forest parks and urban green spaces. It discusses how to reduce the intrusion of artificial lighting on ecosystems and how to make better use of the positive effect of artificial light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.