A pair of ultrahigh-frequency (UHF) radars system for measuring the two-dimensional river flow patterns is presented. The system consists of two all-digital UHF radars with exactly the same hardware structure, operating separately at 329–339 MHz and 341–351 MHz. The adoption of direct radio frequency (RF) sampling technique and digital pulse compression simplifies the structure of radar system and eliminates the distortion introduced by the analog mixer, which improves the SNR and dynamic range of the radar. The field experiment was conducted at Hanjiang River, Hubei province, China. Over a period of several weeks, the radar-derived surface velocity has been very highly correlated with the measurements of EKZ-I, with a correlation coefficient of 0.958 and a mean square error of 0.084 m/s.
This paper numerically analyzes the characteristics of the Doppler spectrum at HF/VHF/UHF bands from 1D time-varying ocean-like surfaces at grazing incidence in vertical polarization mode. The rough surface is transformed into a local perturbation plane which has its roughness flattened at the edges. The scattering waves include coherent reflected wave and incoherent scattering waves. The surface currents exciting the incoherent scattering waves are regarded as the unknowns which can be solved from the improved surface integral equation using the method of moments (MoM). The incident plane wave allows the incident angle to reach up to 90° (grazing incidence). Then the backscattering wave in the far field can be calculated, and the Doppler spectrum is obtained by coherent Monte-Carlo simulation. Firstly, the validity of the method is verified by comparing with the mature small perturbation method at the HF band. Then the incident wave frequency is asymptotically increased from HF to UHF, and the application range of the SPM is quantitatively evaluated in the Doppler spectrum domain. Finally, the paper focuses on analyzing the characteristics of Doppler spectrum in different bands and different sea states and comparing the influence of nonlinear ocean waves on the Doppler spectrum at different frequencies.
This paper provides a teaching concept for control theory education based on Virtual Robot Experimentation Platform (V-REP). A cart inverted pendulum virtual physical model is developed on V-REP. Students must analyze, design, and implement a suitable controller for the cart inverted pendulum system using their knowledge of the control theory. Different from traditional experiment and numerical simulation, virtual experiment is safe and less constrained. Moreover, the experiment results are more intuitive and obvious. This study can improve students’ interest in learning the control theory and help students understand the relevant content better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.