Polycystic ovary syndrome (PCOS) is the most common complex endocrine and metabolic disease in women of reproductive age. It is characterized by anovulatory infertility, hormone disorders, and polycystic ovarian morphology. Regarding the importance of granulosa cells (GCs) in the pathogenesis of PCOS, few studies have investigated the etiology at a single “omics” level, such as with an mRNA expression array or methylation profiling assay, but this can provide only limited insights into the biological mechanisms. Here, genome-wide DNA methylation together with lncRNA-miRNA-mRNA profiles were simultaneously detected in GCs of PCOS cases and controls. A total of 3579 lncRNAs, 49 miRNAs, 669 mRNAs, and 890 differentially methylated regions (DMR)-associated genes were differentially expressed between PCOS cases and controls. Pathway analysis indicated that these differentially expressed genes were commonly associated with steroid biosynthesis and metabolism-related signaling, such as glycolysis/gluconeogenesis. In addition, we constructed ceRNA networks and identified some known ceRNA axes, such as lncRNAs-miR-628-5p-CYP11A1/HSD17B7. We also identified many new ceRNA axes, such as lncRNAs-miR-483-5p-GOT2. Interestingly, most ceRNA axes were also closely related to steroid biosynthesis and metabolic pathways. These findings suggest that it is important to systematically consider the role of reproductive and metabolic genes in the pathogenesis of PCOS.
Oxidative stress has been recognized as one of the causal mediators of female infertility by affecting the oocyte quality and early embryo development. Improving oxidative stress is essential for reproductive health. Melatonin, a self-secreted antioxidant, has a wide range of effects by improving mitochondrial function and reducing the damage of reactive oxygen species (ROS). This minireview illustrates the applications of melatonin in reproduction from four aspects: physiological ovarian aging, vitrification freezing, in vitro maturation (IVM), and oxidative stress homeostasis imbalance associated with polycystic ovary syndrome (PCOS), emphasising the role of melatonin in improving the quality of oocytes in assisted reproduction and other adverse conditions.
Alterations in miRNAs are associated with many metabolic disorders, such as type 2 diabetes (T2DM). The miR-23b/27b/24-1 cluster contains miR-23b, miR-27b, and miR-24-1, which are located within 881 bp on chromosome 9. Studies examining the roles of miR-23b, miR-27b, and miR-24-1 have demonstrated their multifaceted functions in variable metabolic disorders. However, their joint roles in metabolism in vivo remain elusive. To investigate this subject, we constructed miR-23b/27b/24-1 cluster knockout (KO) mice. Compared with wild-type (WT) mice, the KO mice exhibited impaired glucose tolerance, which was accompanied by a reduction in the respiratory exchange rate (RER). These alterations were more noticeable after a high-fat diet (HFD) induction. Hepatic metabolomic results showed decreased expression of reduced nicotinamide adenine dinucleotide (NADH), nicotinamide adenine dinucleotide (NAD), phosphoenolpyruvic acid (PEP), and phosphoric acid, which are involved in the glycolysis pathway. The transcriptomic results indicated that genes involved in glycolysis showed a downregulation trend. qPCR and Western blot revealed that pyruvate kinase (PKLR), the key rate-limiting enzyme in glycolysis, was significantly reduced after the deletion of the miR-23b/27b/24-1 cluster. Together, these observations suggest that the miR-23b/27b/24-1 cluster is involved in the regulation of glucose homeostasis via the glycolysis pathway.
OBJECTIVE: Polycystic ovary syndrome can be divided into different subtypes, including insulin resistance and hyperandrogenism. The aim of this study was to investigate the relationship between serum asprosin levels and polycystic ovary syndrome subtypes.METHODS: A total of 93 women with polycystic ovary syndrome and 77 healthy women as controls were selected for this study. The clinical and laboratory data were compared between the Polycystic ovary syndrome group and the control group. The Polycystic ovary syndrome group was further divided into subgroups: (1) women with or without hyperandrogenism (polycystic ovary syndrome hyperandrogenism and Polycystic ovary syndrome none-hyperandrogenism, respectively) and ( 2) women with or without insulin resistance (polycystic ovary syndrome insulin resistance and Polycystic ovary syndrome none-insulin resistance, respectively). Serum asprosin was measured by using enenzyme-linked immunosorbent assay.RESULTS: Serum asprosin levels showed no significant difference between the polycystic ovary syndrome and control groups. However, it was significantly lower in the Polycystic ovary syndrome HA and insulin resistance groups compared with the respective Polycystic ovary syndrome none-hyperandrogenism and none-insulin resistance groups (p<0.05). In the Polycystic ovary syndrome group, serum asprosin was negatively correlated with body mass index, luteinizing hormone, testosterone, basal antral follicles, fasting insulin, homeostatic model assessment of insulin resistance, and triglycerides. After adjusting for body mass index, the correlations were not significant, and asprosin was only positively correlated with prolactin (prolactin; r=0.426, p<0.001). CONCLUSION:Our study shows that women with polycystic ovary syndrome hyperandrogenism or insulin resistance exhibit significantly lower serum asprosin levels compared with controls, and the lower asprosin level directly correlated with prolactin level.
Interspecies somatic cell nuclear transfer (iSCNT) offers significant opportunities for the derivation of embryonic stem cells (ESCs) that can model diseases. In this study, we investigated the development of murine-porcine iSCNT embryos and compared these to outcomes associated with porcine-porcine SCNT embryos. Enucleation was performed on in vitro-matured porcine oocytes using the Oosight spindle viewer system (CRI, UK). Either murine embryonic fibroblasts or porcine cumulus cells were injected into porcine ooplasm using a piezo-electric micromanipulator. After being exposed to the porcine ooplasm for 1 h, the reconstructed oocytes were activated by a combination of A23187 and 6-DMAP for 3.5 h. For the murine-porcine embryos (n = 9375), we used a serial culture method, namely porcine zygote medium (PZM) for 48 h followed by incubation with KSOM for another 5 days. We found that the majority of murine-porcine embryos (73.58%) arrested at the 4- to 8-cell stage, whilst a very small minority progressed through to blastocyst (0.064%). Porcine-porcine SCNT reconstructed oocytes (n = 142) cultured in PZM achieved a 15% blastocyst development rate. In the murine-porcine embryos, 10/44 embryos had chromosomal DNA loss associated with apoptosis, as determined by immunocytochemistry using the H2A.X antibody. We also found that at later stages, morula to blastocyst, the mouse-to-pig reconstructed embryos did not exhibit murine-specific Oct-4 expression patterns. Furthermore, murine mitochondrial DNA tended to be eliminated rather than preserved by the murine nuclei, which could render any subsequently derived ESCs dysfunctional due to 2 diverse genomes contributing genes to the electron transfer chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.