The objective of this study was to explore the accuracy of low-dosage computed tomography (CT) images based on the expectation maximization algorithm denoising algorithm (EM algorithm) in the detection and diagnosis of renal dysplasia, so as to provide reasonable research basis for accuracy improvement of clinical diagnosis of renal dysplasia. 120 patients with renal dysplasia in hospital were randomly selected as the research objects, and they were divided into two groups by random number method, with 60 patients in each group. The low-dosage CT images of patients in the control group were not processed (nonalgorithm group), and the low-dosage CT images of patients in the observation group were denoised using the EM algorithm (algorithm group). In addition, it was compared with the results of the comprehensive diagnosis (gold standard) to analyze the accuracy of the diagnosis of the two groups of patients and the consistency with the results of the pathological diagnosis. The results were compared with those of the comprehensive diagnosis (gold standard) to analyze the accuracy of the diagnosis of the two groups of patients. The results showed that the peak signal-to-noise ratio (PSNR) (15.9 dB) of the EM algorithm was higher than the regularized adaptive matching pursuit (RAMP) algorithm (1.69 dB) and the mean filter (4.3 dB) (
P
<
0.05
). The time consumption of EM algorithm (21 s) was shorter than that of PWLS algorithm (34 s) and MS-PWLS algorithm (39 s) (
P
<
0.05
). The diagnosis accuracy of dysplasia of single kidney, absence of single kidney, horseshoe kidney, and duplex kidney was obviously higher in the algorithm group than the control group (
P
<
0.05
), which were 66.67% vs. 90%, 60% vs. 88.89%, 71.42% vs. 100%, and 60% vs. 88.89%, respectively. The incidence of hypertension in patients with autosomal dominant polycystic kidney disease (ADPKD) (56.77%) was much higher than that of the other diseases (
P
<
0.05
). After denoising by the EM algorithm, low-dosage CT image could improve the diagnostic accuracy of several types of renal dysplasia except ADPKD, showing certain clinical application value. In addition, ADPKD was easy to cause hypertension.
ObjectivesTo explore the predictive value of gadoxetic acid-enhanced magnetic resonance imaging (MRI) combined with T1 mapping and clinical factors for Ki-67 expression in hepatocellular carcinoma (HCC).MethodsA retrospective study was conducted on 185 patients with pathologically confirmed solitary HCC from two institutions. All patients underwent preoperative T1 mapping on gadoxetic acid-enhanced MRI. Patients from institution I (n = 124) and institution II (n = 61) were respectively assigned to the training and validation sets. Univariable and multivariable analyses were performed to assess the correlation of clinico-radiological factors with Ki-67 labeling index (LI). Based on the significant factors, a predictive nomogram was developed and validated for Ki-67 LI. The performance of the nomogram was evaluated on the basis of its calibration, discrimination, and clinical utility.ResultsMultivariable analysis showed that alpha-fetoprotein (AFP) levels > 20ng/mL, neutrophils to lymphocyte ratio > 2.25, non-smooth margin, tumor-to-liver signal intensity ratio in the hepatobiliary phase ≤ 0.6, and post-contrast T1 relaxation time > 705 msec were the independent predictors of Ki-67 LI. The nomogram based on these variables showed the best predictive performance with area under the receiver operator characteristic curve (AUROC) 0.899, area under the precision-recall curve (AUPRC) 0.946 and F1 score of 0.912; the respective values were 0.823, 0.879 and 0.857 in the validation set. The Kaplan–Meier curves illustrated that the cumulative recurrence probability at 2 years was significantly higher in patients with high Ki-67 LI than in those with low Ki-67 LI (39.6% [53/134] vs. 19.6% [10/51], p = 0.011).ConclusionsGadoxetic acid-enhanced MRI combined with T1 mapping and several clinical factors can preoperatively predict Ki-67 LI with high accuracy, and thus enable risk stratification and personalized treatment of HCC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.