We presented an experimental comparison of the core-composition difference on the suppression of the photodarkening and transverse mode instability effects. Two core-composition fibers, entailing Yb/Al/Ce and Yb/Al/P co-doped fibers, were fabricated by MCVD process combined with solution doping technique. The parameters of two fibers were almost the same. The PD-induced loss at equilibrium was 3.94 dB/m at 702 nm in Yb/Al/Ce fiber, while it was 0.99 dB/m in Yb/Al/P fiber. To obtain a deeper understanding of the impact of PD on laser performance, a bidirectional pumping fiber amplifier was constructed. Compared with Yb/Al/Ce co-doped fiber, the TMI thresholds of Yb/Al/P co-doped fiber were enhanced in co-pumped and counter-pumped schemes. Meanwhile, the slope efficiency in bidirectional scheme was promoted by 4%. Moreover, the transmittance at 638 nm confirmed the superior PD resistance of Yb/Al/P co-doped fiber. These experimental results pave the way for the further development of high-power fiber lasers.
A low-numerical aperture (NA) confined-doped long-tapered (LCT) Yb-doped fiber is proposed and fabricated by modified chemical vapor deposition combined with solution doping technique. The LCT fiber owns the core NA of ∼0.05 and the gain dopant doping diameter ratio of ∼77%, with a core/cladding diameter of 25/400 µm at both ends and 37.5/600 µm in the middle. The laser performance is demonstrated by a bidirectional pumping all-fiber amplifier, of which a 4.18-kW single-mode (M2 factor ∼1.3) laser output is achieved with a slope efficiency of ∼82.8%. Compared with the conventional fiber, the co-pumped and counter-pumped transverse mode instability thresholds and beam quality of the LCT fiber are remarkably enhanced. Throughout the continuous operation, the LCT fiber amplifier presents high power stability with fluctuation of < 1%. These results indicate that LCT fiber has great potential in power scaling remaining excellent beam quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.