The aim of the present study is to test the hypothesis that large-diameter myelinated muscle afferents contribute to the pathophysiology of myofascial trigger points (MTrPs). The ischemic compression blockage (ICB) of large-diameter myelinated muscle afferents was obtained with a 7-cm-wide tourniquet applied around the upper arm proximal to the brachioradialis muscle in 20 healthy subjects. This study consisted of two randomized sessions with an interval of 1 week in between each session. In one session, pressure pain threshold (PPT) and pressure threshold for eliciting referred pain (PTRP) were measured at an MTrP region in the brachioradialis muscle in one forearm. In another session, PPT was measured at a non-MTrP region in the brachioradialis muscle of the contralateral forearm at the time of pre-compression, 20 min following compression, and 10 min after decompression. The results showed that ICB, which mainly blocks large-diameter myelinated muscle afferents, was associated with an increase in PPT and PTRP (all P < 0.001) at MTrP regions but not at non-MTrP regions. These results suggest that large-diameter muscle afferents may be involved in pain and mechanical hyperalgesia at MTrPs.
The recent success of PD-1/PD-L1 antibodies for advanced cancer treatment has led to the conclusion that activating the immune system can be employed to fight cancer. These results also encourage the development of small molecule immunomodulators for cancer immunotherapy. RORγt is a key transcription factor mediating Th17 cell differentiation and IL-17 production, which is able to activate CD8 T cells and elicit antitumor efficacy. Since RORγt agonists have been shown to increase basal activity of RORγt and promote Th17 cell differentiation, development of RORγt agonists could provide a unique approach to cancer immunotherapy. In this review, we summarize RORγt sterol and synthetic agonists, analyze the common ground of their mode of actions, and discuss the potential role of RORγt agonists as small molecule therapeutics for cancer immunotherapy.
Objective
This study aimed to reveal the physiological mechanism in subjects with mild cognitive impairment based on effective connectivity method.
Methods
Effective connectivity was assessed by dynamic Bayesian inference of the oxygenated hemoglobin concentration signals measured through functional near-infrared spectroscopy. The oxygenated hemoglobin concentration signals were recorded from the left prefrontal cortex, right prefrontal cortex, left motor cortex, right motor cortex, left occipital lobe, and right occipital lobe of 26 subjects with mild cognitive impairment (mild cognitive impairment group) and 28 healthy elderly subjects (control group) at resting state.
Results
The coupling strength of right prefrontal cortex to left prefrontal cortex (F = 7.964, P = 0.007) and left prefrontal cortex to right occipital lobe (F = 4.278, P = 0.044) in interval III as well as left prefrontal cortex to left occipital lobe (F = 5.637, P = 0.021), right occipital lobe to left prefrontal cortex (F = 4.762, P = 0.034), and right prefrontal cortex to left occipital lobe (F = 4.06, P = 0.049) in interval IV in the mild cognitive impairment group were significantly lower than those in the control group.
Conclusions
The decreased effective connectivity levels among brain regions may be a marker of impaired cognitive function in the mild cognitive impairment group. The constructed effective connectivity network based on functional near-infrared spectroscopy provide a noninvasive method to assess mild cognitive impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.