Mesenchymal stem cell (MSC)-derived exosomes have diverse functions in regulating wound healing and inflammation; however, the molecular mechanism of human umbilical cord MSC (hUCMSC)-derived exosomes in regulating burn-induced inflammation is not well understood. We found that burn injury significantly increased the inflammatory reaction of rats or macrophages exposed to lipopolysaccharide (LPS), increased tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) levels and decreased IL-10 levels. hUCMSC-exosome administration successfully reversed this reaction. Further studies showed that miR-181c in the exosomes played a pivotal role in regulating inflammation. Compared to control hUCMSC-exosomes, hUCMSC-exosomes overexpressing miR-181c more effectively suppressed the TLR4 signaling pathway and alleviated inflammation in burned rats. Administration of miR-181c-expressing hUCMSC-exosomes or TLR4 knockdown significantly reduced LPS-induced TLR4 expression by macrophages and the inflammatory reaction. In summary, miR-181c expression in hUCMSC-exosomes reduces burn-induced inflammation by downregulating the TLR4 signaling pathway.
BackgroundSevere burns are a common and highly lethal trauma. The key step for severe burn therapy is to promote the wound healing as early as possible, and reports indicate that mesenchymal stem cell (MSC) therapy contributes to facilitate wound healing. In this study, we investigated effect of human umbilical cord MSCs (hUC-MSCs) could on wound healing in a rat model of severe burn and its potential mechanism.MethodsAdult male Wistar rats were randomly divided into sham, burn, and burn transplanted hUC-MSCs. GFP labeled hUC-MSCs or PBS was intravenous injected into respective groups. The rate of wound closure was evaluated by Image Pro Plus. GFP-labeled hUC-MSCs were tracked by in vivo bioluminescence imaging (BLI), and human-specific DNA expression in wounds was detected by PCR. Inflammatory cells, neutrophils, macrophages, capillaries and collagen types I/III in wounds were evaluated by histochemical staining. Wound blood flow was evaluated by laser Doppler blood flow meter. The levels of proinflammatory and anti-inflammatory factors, VEGF, collagen types I/III in wounds were analyzed using an ELISA.ResultsWe found that wound healing was significantly accelerated in the hUC-MSC therapy group. The hUC-MSCs migrated into wound and remarkably decreased the quantity of infiltrated inflammatory cells and levels of IL-1, IL-6, TNF-α and increased levels of IL-10 and TSG-6 in wounds. Additionally, the neovascularization and levels of VEGF in wounds in the hUC-MSC therapy group were markedly higher than those in other control groups. The ratio of collagen types I and III in the hUC-MSC therapy group were markedly higher than that in the burn group at indicated time after transplantation.ConclusionThe study suggests that hUC-MSCs transplantation can effectively improve wound healing in severe burned rat model. Moreover, these data might provide the theoretical foundation for the further clinical application of hUC-MSC in burn areas.
X-linked inhibitor of apoptosis protein (XIAP) overexpression has been found to be associated with malignant cancer progression and aggression in individuals with many types of cancers. However, the molecular basis of XIAP in the regulation of cancer cell biological behavior remains largely unknown. In this study, we found that a deficiency of XIAP expression in human cancer cells by either knock-out or knockdown leads to a marked reduction in -actin polymerization and cytoskeleton formation. Consistently, cell migration and invasion were also decreased in XIAP-deficient cells compared with parental wildtype cells. Subsequent studies demonstrated that the regulation of cell motility by XIAP depends on its interaction with the Rho GDP dissociation inhibitor (RhoGDI) via the XIAP RING domain. Furthermore, XIAP was found to negatively regulate RhoGDI SUMOylation, which might affect its activity in controlling cell motility. Collectively, our studies provide novel insights into the molecular mechanisms by which XIAP regulates cancer invasion and offer a further theoretical basis for setting XIAP as a potential prognostic marker and specific target for treatment of cancers with metastatic properties.The X-linked inhibitor of apoptosis protein (XIAP) 3 is a member of the IAP family that has received substantial attention during the last few years. Biochemical and structural studies have indicated that XIAP has three zinc-binding baculovirus IAP repeat (BIR) domains (BIR1-3), a loop region, and a RING finger (1). The BIR3 domain of XIAP is able to bind and inhibit caspase-9, whereas the BIR2 region binds and inhibits active caspase-3 and caspase-7. The RING domain of XIAP has E3 ligase activity and is able to degrade proteins by linking them to ubiquitin molecules (2-4). More recently, XIAP has been found to be a regulator of the cell cycle through binding the cell cycle regulators MAGED1 and NRAGE and to play an important role in the control of intracellular copper levels through ubiquitin ligase-dependent regulation of the copper-regulating gene MURR1 (5, 6). The ability of XIAP to regulate these pathways, uncoupled with its caspase inhibitory activities, indicates its distinct properties and functions. Based on the finding that XIAP-deficient mice do not display obvious apoptotic phenotypes (7), it was hypothesized that there might be new functions and signaling pathways affected by XIAP, which are probably distinct from those involved in apoptotic caspase cascades.There is growing evidence showing the correlation between high XIAP overexpression and malignant cancer aggression (8, 9). Comparison of XIAP expression between adjacent malignant tissue and normal tissue invariably demonstrates that XIAP is much more highly expressed in the malignant cancer tissue (10 -20). Poorly differentiated carcinomas also display significantly higher levels of XIAP expression than do well differentiated carcinomas (13,(17)(18)(19)(20). Moreover, XIAP expression in metastatic specimens is much higher than that in primary cancers ...
Previous studies on cancer cell invasion were primarily focused on its migration because these two events were often considered biologically equivalent. Here we found that T24T cells exhibited higher invasion but lower migration abilities than T24 cells. Expression of Rho-GDPases was much lower and expression of SOD2 was much higher in T24T cells than those in T24 cells. Indeed, knockdown of SOD2 in T24T cells can reverse the cell migration but without affecting cell invasion. We also found that SOD2 inhibited the JNK/c-Jun cascade, and the inhibition of c-Jun activation by ectopic expression of TAM67 impaired Rho-GDPases expression and cell migration in T24T shSOD2 cells. Further, we found that Sp1 can upregulate SOD2 transcription in T24T cells. Importantly, matrix metalloproteinase-2 (MMP-2) was overexpressed in T24T and participated in increasing its invasion, and MMP-2 overexpression was mediated by increasing nuclear transport of nucleolin, which enhanced mmp-2 mRNA stability. Taken together, our study unravels an inverse relationship between cell migration and invasion in human bladder cancer T24T cells and suggests a novel mechanism underlying the divergent roles of SOD2 and MMP-2 in regulating metastatic behaviors of human bladder T24T in cell migration and invasion.
Background:The anti-cancer activity and mechanisms of isorhapontigenin (ISO) have never been explored. Results: ISO exhibited an anti-cancer activity accompanied by apoptotic induction and XIAP down-regulation through attenuation of SP1 expression. Conclusion: ISO is an active anti-cancer compound by inducing apoptosis via down-regulation of SP1/XIAP pathway. Significance: Current studies identify a new promising active compound for therapy of human cancers with XIAP overexpression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.