Answering conjunctive queries over ontology-enriched datasets is a core reasoning task for many applications. Query answering is, however, computationally very expensive, which has led to the development of query answering procedures that sacrifice either expressive power of the ontology language, or the completeness of query answers in order to improve scalability. In this paper, we describe a hybrid approach to query answering over OWL 2 ontologies that combines a datalog reasoner with a fully-fledged OWL 2 reasoner in order to provide scalable `pay-as-you-go' performance. The key feature of our approach is that it delegates the bulk of the computation to the datalog reasoner and resorts to expensive OWL 2 reasoning only as necessary to fully answer the query. Furthermore, although our main goal is to efficiently answer queries over OWL 2 ontologies and data, our technical results are very general and our approach is applicable to first-order knowledge representation languages that can be captured by rules allowing for existential quantification and disjunction in the head; our only assumption is the availability of a datalog reasoner and a fully-fledged reasoner for the language of interest, both of which are used as `black boxes'. We have implemented our techniques in the PAGOdA system, which combines the datalog reasoner RDFox and the OWL 2 reasoner HermiT. Our extensive evaluation shows that PAGOdA succeeds in providing scalable pay-as-you-go query answering for a wide range of OWL 2 ontologies, datasets and queries.
Continuous-variable quantum key distribution (CVQKD) with a real local oscillator (LO) has been extensively studied recently due to its security and simplicity. In this paper, we propose a novel implementation of a high-key-rate CVQKD with a real LO. Particularly, with the help of the simultaneously generated reference pulse, the phase drift of the signal is tracked in real time and then compensated. By utilizing the time and polarization multiplexing techniques to isolate the reference pulse and controlling the intensity of it, not only the contamination from it is suppressed, but also a high accuracy of the phase compensation can be guaranteed. Besides, we employ homodyne detection on the signal to ensure the high quantum efficiency and heterodyne detection on the reference pulse to acquire the complete phase information of it. In order to suppress the excess noise, a theoretical noise model for our scheme is established. According to this model, the impact of the modulation variance and the intensity of the reference pulse are both analysed theoretically and then optimized according to the experimental data. By measuring the excess noise in the 25km optical fiber transmission system, a 3.14Mbps key rate in the asymptotic regime proves to be achievable. This work verifies the feasibility of the high-key-rate CVQKD with a real LO within the metropolitan area.
We report on what we believe is the first field implementation of a continuous-variable quantum key distribution (CV-QKD) network with point-to-point configuration. Four QKD nodes are deployed on standard communication infrastructures connected with commercial telecom optical fiber. Reliable key exchange is achieved in the wavelength-division-multiplexing CV-QKD network. The impact of a complex and volatile field environment on the excess noise is investigated, since excess noise controlling and reduction is arguably the major issue pertaining to distance and the secure key rate. We confirm the applicability and verify the maturity of the CV-QKD network in a metropolitan area, thus paving the way for a next-generation global secure communication network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.