:Gallium is an important element in the production of a variety of compound semiconductors for optoelectronic devices. Gallium has a low melting point and is easily oxidized to give oxides of different compositions that depend on the conditions of solutions containing Ga. Gallium electrode reaction is highly irreversible in acidic media at the dropping mercury electrode. The passive film on a gallium surface is formed during anodic oxidation of gallium metal in alkaline media. Besides, some results in published reports have not been consistent and reproducible. An increase in the demand of intermetallic compounds and semiconductors containing gallium gives rise to studies on electrosynthesis of them and an increase of gallium concentration in the environment with various application of gallium causes the development of electroanalysis tools of Ga. It is required to understand the electrochemistry of Ga and to predict the electrochemical behavior of Ga to meet these needs. Any review papers related to the electrochemistry of gallium have not been published since 1978, when the review on the subject was published by Popova et al. In this study, the redox behavior, anodic oxidation, and electrodeposition of gallium, and trace determination of gallium by stripping voltammetries will be reviewed.
:Many researchers focus on indium contained semiconductors and alloy compounds for their various applications. Electrochemists want to obtain indium contained compounds simply via one-step electrodeposition. First of all, electrochemistry of constituent elements must be understood in order to develop the best condition for the electrodeposition of indium contained compounds. We will review the electrochemistry of indium. Equilibria between indium metal and indium ions and the standard electrode potentials of the equilibria will be reviewed. The electrochemical reactions of indium species are affected by surrounding conditions. Thus dependences of electrochemical behaviors of indium metal and indium ions on various parameters will be reviewed.
:The electrodeposition of indium onto a copper electrode from an aqueous sulfate solution containing In 3+ was studied by means of cyclic voltammetry and chronoamperometry. Reduction and oxidation of indium on copper were investigated by using cyclic voltammograms at different negative limiting potentials and at different scan rates in cumulative cycles. Cyclic voltammograms indicated that reduction and oxidation processes of indium could involve various reactions. Chronoamperometry was carried out to analyze the nucleation mechanism of indium in the early stage of indium electrodeposition. The non-dimensional plot of the current transients at different potentials showed that the shape of the plot depended on the applied potential. The nucleation of indium at potential step of −0.6~−0.8 V was close to progressive nucleation limited by diffusion. However the nondimensional plot of current transients for the indium nucleation showed different behaviors from theoretical curves at the potential step lower than −0.8 V.
:Although indium (In) is not an abundant element, the use of indium is expected to grow, especially as applied to copper-indium-(gallium)-selenide (CI(G)S) solar cells. In future when CIGS solar cells will be used extensively, the available amount of indium could be a limiting factor, unless a synthetic technique of efficiently utilizing the element is developed. Current vacuum techniques inherently produce a significant loss of In during the synthetic process, while electrodeposition exploits nearly 100% of the In, with little loss of the material. Thus, an electrochemical process will be the method of choice to produce alloys of In once the proper conditions are designed. In this review, we examine the electrochemical processes of electrodeposition in the synthesis of indium alloys. We focus on the conditions under which alloys are electrodeposited and on the factors that can affect the composition or properties of alloys. The knowledge is to facilitate the development of electrochemical means of efficiently using this relatively rare element to synthesize valuable materials, for applications such as solar cells and light-emitting devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.