Water confined in nanomaterials demonstrates anomalous behavior. Recent experiments and simulations have established that room-temperature water inside carbon nanotubes and between graphene layers behaves as solid ice: its molecules form four hydrogen bonds in a highly organized network with long-range order and exhibit low mobility. Here, we applied a first-principle energy decomposition analysis to reveal that the strength and patterns of donor–acceptor interactions between molecules in these low-dimensional ice structures resemble those in bulk liquid water rather than those in hexagonal ice. A correlation analysis shows that this phenomenon originates from a variety of hydrogen-bond distortions, different in 1D and 2D ice, from the tetrahedral configuration due to constraints imposed by nanomaterials. We discuss the implications of the reported interplay between the electronic and geometric structure of hydrogen bonds in “room-temperature ice” for computer modeling of confined water using traditional force fields.
The hypothesis that liquid water can separate into two phases in the supercooled state has been supported by recent experimental and theoretical studies. However, whether such structural inhomogeneity extends to ambient conditions is under intense debate. Due to the dynamic nature of the hydrogen bond network of liquid water, exploring its structure requires detailed insight into the collective motion of neighboring water molecules, a missing link that has not been examined so far. Here, highly sensitive quantum mechanical calculations detect that the time evolution of nearby hydrogen bonds is strongly correlated, revealing a direct mechanism for the appearance of short-range structural fluctuations in the hydrogen bond network of liquid water for the first time. This correlated dynamics is found to be closely connected to the static structural picture. The distortions from the tetrahedral structure do not occur independently but are correlated due to the preference of nearby donors and acceptors to be in similar environments. The existence of such cooperative fluctuations is further supported by the temperature dependence of the local structural evolution and explained by conventional analysis of localized orbitals. It was found that such correlated structural fluctuations are only observed on a short length scale in simulations at ambient conditions. The correlations of the nearby hydrogen bond pairs of liquid water unveiled here are expected to offer a new insight into connecting the dynamics of individual water molecules and the local structure of the hydrogen bond network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.