We present Mantis, a framework for predicting the Computational Resource Consumption(CRC) of Android applications on given inputs accurately, and efficiently. A key insight underlying Mantis is that program codes often contain features that correlate with performance and these features can be automatically computed efficiently. Mantis synergistically combines techniques from program analysis and machine learning. It constructs concise CRC models by choosing from many program execution features only a handful that are most correlated with the program's CRC metric yet can be evaluated efficiently from the program's input. We apply program slicing to reduce evaluation time of a feature and automatically generate executable code snippets for efficiently evaluating features. Our evaluation shows that Mantis predicts four CRC metrics of seven Android apps with estimation error in the range of 0-11.1% by executing predictor code spending at most 1.3% of their execution time on Galaxy Nexus.
Recent efforts towards mobile cloud propose to offload mobile applications to cloud servers for the improved performance and battery life of mobile devices. However, existing schemes completely ignore the costs of cloud resources by assuming that idle servers are always available for free of charge. These unrealistic assumptions make each server run only a small load to achieve the guaranteed high offload performance. Therefore, these schemes cannot be applied to real-world commercial clouds which aim to minimize the operation costs by maximizing the server throughput, and then charge users for their resource usage.In this paper, we propose CMcloud, a novel cost-effective mobile-to-cloud offloading platform, which works nicely under the real-world cloud environments. CMcloud minimizes both the server costs and the user service fee by offloading as many mobile applications to a single server as possible, while satisfying the target performance of all applications. To achieve such goals, CMcloud exploits novel architecture performance modeling and server migration techniques. Our implementation shows that CMcloud can improve the datacenter throughput by 84% over a conventional static light-load scheme (or a 2.7x higher per-socket throughput.) Alternatively, CMcloud reduces the number of service failures by 83% over a static high-load scheme, while even improving the throughput by 31%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.