[1] Paleointensity determinations based on double heating techniques (in-field/zero-field cooling, zerofield/in-field cooling, and two in-field steps with opposite laboratory fields) are generally considered to be functionally interchangeable producing equally reliable paleointensity estimates. To investigate this premise, we have developed a simple mathematical model. We find that both the zero-field first and infield first methods have a strong angular dependence on the laboratory field (parallel, orthogonal, and antiparallel) while the two in-field steps method is independent of the direction of the laboratory-produced field. Contrary to common practice, each method yields quite different outcomes if the condition of reciprocity of blocking and unblocking temperatures is not met, even with marginal (10%) tails of partial thermoremanence. Our calculations suggest that the zero field first method with the laboratory-produced field anti-parallel to the natural remanence (NRM) is the most robust paleointensity determination technique when the intensity of the lab-induced field is smaller than ancient field. However, the zero field first method with the laboratory-field parallel to the NRM is the optimum approach when the intensity of the lab-induced field is larger than the ancient field. By far the best approach, however, is to alternatethe infield-zerofield (IZ) steps with zerofield-infield (ZI) steps.
[1] Quaternary glacial/interglacial cycles have been imprinted on the Chinese loess/ paleosol sequences through pedogenesis. In order to accurately decode the paleoclimatic signals carried by these pedogenic particles it is essential to quantify the pedogenically produced magnetic particles in terms of mineralogy as well as grain size distribution (GSD). To date, the GSD has not been accurately determined because of the dearth of available means for analyzing extremely fine grained (nanometer-scale) pedogenic magnetic particles. Using low-temperature techniques, we systematically investigated the temperature dependency of c fd (defined as c 1Hz À c 10Hz , where c 1Hz and c 10Hz are AC magnetic susceptibility measured at 1 and 10 Hz, respectively) from two characteristic loess profiles, one located at the western Chinese Loess Plateau and the other in the central plateau. On the basis of Néel theory for a shape anisotropy dominant grain and experimental analysis at low temperatures, a quantitative GSD for pedogenic particles in Chinese loess/paleosols was constructed. We found that the dominant magnetic grain size lies just above the superparamagnetic/single-domain threshold ($20-25 nm) and that the GSD is almost independent of the degree of pedogenesis. This observation agrees well with other constraints from previous studies. This new GSD model improves our understanding of the pedogenic processes in Chinese loess, enabling further explicit linkage of environmental magnetism to paleoclimate changes.
S U M M A R YTemperature dependence of magnetic susceptibility (χ − T ) has been widely used to determine changes in mineralogy of natural samples during heat treatment. We carried out integrated rock magnetic experiments to interpret the χ − T curves of the Chinese loess/palaeosols in argon. We used both raw materials and heated samples. In addition, we also investigated the magnetic properties of magnetic extracts and residues to quantify contributions from each fraction to the bulk magnetic properties. For the heating curves, the susceptibility loss (∼30 per cent) between ∼300-400 • C is caused by the inversion from pedogenic fine-grained maghemite to haematite, suggesting that the susceptibility loss can be used as a new concentration index of the pedogenic fine-grained superparamagnetic (SP) particles in the Chinese loess/palaeosols. Unlike the warming curves, the cooling curves are dominated by newly formed fine-grained magnetites with a dominant size of ∼35 nm. The onset for the new production of these finegrained magnetic particles occurs at ∼400 • C. It is interesting that the room-temperature magnetic susceptibility (χ ph ) of the samples heated after a 700 • C run is independent of the degree of pedogenesis and saturates at approximately 33-35 × 10 −7 m 3 kg −1 , indicating that the susceptibility enhancement is controlled only by the reduction of Fe-bearing aeolian minerals during heating. It appears that the 700 • C thermal treatment in argon could be in some sense an analogue to the pedogenic processes. Thus, we predict that ∼33-35 × 10 −7 m 3 kg −1 is the maximum susceptibility that pedogenesis can generate for the last interglacial palaeosol unit (S1). In practice, χ ph would be useful to quantify the aeolian inputs to the Chinese Loess plateau.
[1] Hematite, a ubiquitous mineral in aerobic sediments and soils of temperate and warm areas, is weakly magnetic. However, it carries a stable natural remanent magnetization, and thus can reflect paleoenvironment changes. To quantify the influence of Al content in hematite on its magnetic properties, two series of hematite particles were prepared by hydrothermal transformation of ferrihydrite in aqueous suspension (HFh* series) and by thermal dehydration of goethite (HG* series). Crystal morphological and mineral magnetic properties of these two types of hematites differ distinctively. More specifically, the HFh* series samples display oblate (plate-like) morphologies, while the HG* series samples are prolate (highly acicular). HFh* series samples display higher saturation magnetization but lower magnetic coercivity than that of the HG* series. It is tenable that a better lattice ordering of Al substitution occurs during the process of dehydration of goethite than after transformation from ferrihydrite, resulting in weaker saturation magnetization for HG* series samples. The origin of single domain (SD) hematite in nature can be diagnosed by the correlation of unblocking temperature and magnetic coercivity: a positive correlation indicates the presence of pure (Al-free) SD hematite, while a negative correlation indicates a chemical origin of SD Al-substituted hematite. These results bear new information on decoding the complex magnetic properties of SD Al-hematite in nature environments, and thus deepen our understanding of the mechanism of variations in both paleomagnetic and paleoenvironmental signals carried by Al-hematite.Citation: Jiang, Z., Q. Liu, V. Barrón, J. Torrent, and Y. Yu (2012), Magnetic discrimination between Al-substituted hematites synthesized by hydrothermal and thermal dehydration methods and its geological significance,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.