A feedforward current-sense current-compensation (CSCC) active EMI filter (AEF) for the direct current-side common-mode (CM) electromagnetic interference (EMI) suppression of high-power electric vehicle traction inverters is analyzed and designed. A detailed design of the components with formulas is provided based on an analysis of the CSCC AEF, including the CSCC AEF topology and its implementation. The feedforward active filter stage was implemented using a simple current transformer and a small circuit board. Only a small passive filter with a high resonant frequency is required for high-frequency noise attenuation. The filter's effectiveness was validated using the simulation results and experimental measurements.
A three-phase boost-buck inverter (BBI) comprised of three identical boost-buck DC/DC converter modules is presented for an EV traction inverter application. It allows the step-up and/or step-down of the battery pack voltage according to the operating condition of the traction motor so that the overall performance can be optimized, which is essential for EVs with relatively low and varying battery voltages such as a hybrid EV or fuel-cell EV. It also features low switching losses, low harmonic distortion in the output current, and reduced common-mode voltage and/or current. A detailed analysis and performance evaluation of the BBI compared to the conventional technology demonstrate its feasibility in EV traction applications. The functionality and performance of the boost-buck inverter are verified with simulation and experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.