Background Staphylococcus aureus (S. aureus) mastitis is one of the most difficult diseases to treat in lactating dairy cows worldwide. S. aureus with different lineages leads to different host immune responses. Long non-coding RNAs (lncRNAs) are reported to be widely involved in the progress of inflammation. However, no research has identified stable lncRNAs among different S. aureus strain infections. In addition, folic acid (FA) can effectively reduce inflammation, and whether the inflammatory response caused by S. aureus can be reduced by FA remains to be explored. Methods lncRNA transcripts were identified from Holstein mammary gland tissues infected with different concentrations of S. aureus (in vivo) and mammary alveolar cells (Mac-T cells, in vitro) challenged with different S. aureus strains. Differentially expressed (DE) lncRNAs were evaluated, and stable DE lncRNAs were identified in vivo and in vitro. On the basis of the gene sequence conservation and function conservation across species, key lncRNAs with the function of potentially immune regulation were retained for further analysis. The function of FA on inflammation induced by S. aureus challenge was also investigated. Then, the association analysis between these keys lncRNA transcripts and hematological parameters (HPs) was carried out. Lastly, the knockdown and overexpression of the important lncRNA were performed to validate the gene function on the regulation of cell immune response. Results Linear regression analysis showed a significant correlation between the expression levels of lncRNA shared by mammary tissue and Mac-T cells (P < 0.001, R2 = 0.3517). lncRNAs PRANCR and TNK2–AS1 could be regarded as stable markers associated with bovine S. aureus mastitis. Several HPs could be influenced by SNPs around lncRNAs PRANCR and TNK2–AS1. The results of gene function validation showed PRANCR regulates the mRNA expression of SELPLG and ITGB2 within the S. aureus infection pathway and the Mac-T cells apoptosis. In addition, FA regulated the expression change of DE lncRNA involved in toxin metabolism and inflammation to fight against S. aureus infection. Conclusions The remarkable association between SNPs around these two lncRNAs and partial HP indicates the potentially important role of PRANCR and TNK2–AS1 in immune regulation. Stable DE lncRNAs PRANCR and TNK2–AS1 can be regarded as potential targets for the prevention of bovine S. aureus mastitis. FA supplementation can reduce the negative effect of S. aureus challenge by regulating the expression of lncRNAs.
Mastitis caused by Staphylococcus aureus (S. aureus) infection is one of the most difficult diseases to treat in dairy cattle. Exploring the biological progression of S. aureus mastitis via the interaction between host, pathogen, and environment is the key to an effective and sustainable improvement of animal health. Here, two strains of S. aureus and a strain of MRSA (Methicillin-resistant Staphylococcus aureus) isolated from cows with different inflammation phenotypes were used to challenge Mac-T cells and to investigate their effects on the global transcriptome of the cells, then to explore the potential regulatory mechanisms of folic acid on S. aureus mastitis prevention. Differential gene expression or splicing analysis showed that different strains of S. aureus led to distinct transcriptional responses from the host immune system. Folic acid could protect host defense against the challenge of S. aureus and MRSA partially through activating cytoplasmic DNA sensing and tight junction pathway. ZBP1 at the upstream of cytoplasmic DNA sensing pathway was verified and related to anti-pathogen through RNA interference. Further enrichment analysis using these transcriptome data with cattle large-scale genome-wide association study (GWAS) data confirmed that ZBP1 gene is highly associated with bovine somatic cell score (SCS) trait. Our data shed light on the potential effect of FA through regulating key gene and then protect host cells’ defense against S. aureus and MRSA.
Somatic cell count (SCC) is an important indicator of the health state of bovine udders. However, the exact cut-off value used for differentiating the cows with healthy quarters from the cows with subclinical mastitis remains controversial. Here, we collected composite milk (milk from four udder quarters) and peripheral blood samples from individual cows in two different dairy farms and used 16S rRNA gene sequencing combined with RNA-seq to explore the differences in the milk microbial composition and transcriptome of cows with three different SCC levels (LSCC: <100,000 cells/mL, MSCC: 100,000–200,000 cells/mL, HSCC: >200,000 cells/mL). Results showed that the milk microbial profiles and gene expression profiles of samples derived from cows in the MSCC group were indeed relatively easily discriminated from those from cows in the LSCC group. Discriminative analysis also uncovered some differentially abundant microbiota at the genus level, such as Bifidobacterium and Lachnospiraceae_AC2044_group, which were more abundant in milk samples from cows with SCC below 100,000 cells/mL. As for the transcriptome profiling, 79 differentially expressed genes (DEGs) were found to have the same direction of regulation in two sites, and functional analyses also showed that biological processes involved in inflammatory responses were more active in MSCC and HSCC cows. Overall, these results showed a similarity between the milk microbiota and gene expression profiles of MSCC and HSCC cows, which presented further evidence that 100,000 cells/ml is a more optimal cut-off value than 200,000 cells/mL for intramammary infection detection at the cow level.
Background Insights into the genetic basis of complex traits and disease in both human and livestock species have been achieved over the past decade through detection of genetic variants in genome-wide association studies (GWAS). A majority of such variants were found located in noncoding genomic regions, and though the involvement of numerous regulatory elements (REs) has been predicted across multiple tissues in domesticated animals, their evolutionary conservation and effects on complex traits have not been fully elucidated, particularly in ruminants. Here, we systematically analyzed 137 epigenomic and transcriptomic datasets of six mammals, including cattle, sheep, goats, pigs, mice, and humans, and then integrated them with large-scale GWAS of complex traits. Results Using 40 ChIP-seq datasets of H3K4me3 and H3K27ac, we detected 68,479, 58,562, 63,273, 97,244, 111,881, and 87,049 REs in the liver of cattle, sheep, goats, pigs, humans and mice, respectively. We then systematically characterized the dynamic functional landscapes of these REs by integrating multi-omics datasets, including gene expression, chromatin accessibility, and DNA methylation. We identified a core set (n = 6359) of ruminant-specific REs that are involved in liver development, metabolism, and immune processes. Genes with more complex cis-REs exhibited higher gene expression levels and stronger conservation across species. Furthermore, we integrated expression quantitative trait loci (eQTLs) and GWAS from 44 and 52 complex traits/diseases in cattle and humans, respectively. These results demonstrated that REs with different degrees of evolutionary conservation across species exhibited distinct enrichments for GWAS signals of complex traits. Conclusions We systematically annotated genome-wide functional REs in liver across six mammals and demonstrated the evolution of REs and their associations with transcriptional output and conservation. Detecting lineage-specific REs allows us to decipher the evolutionary and genetic basis of complex phenotypes in livestock and humans, which may benefit the discovery of potential biomedical models for functional variants and genes of specific human diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.