Heterogeneous nuclear ribonucleoprotein K (hnRNPK), a ubiquitously occurring RNA-binding protein (RBP), can interact with numerous nucleic acids and various proteins and is involved in a number of cellular functions including transcription, translation, splicing, chromatin remodelling, etc. Through its abundant biological functions, hnRNPK has been implicated in cellular events including proliferation, differentiation, apoptosis, DNA damage repair and the stress and immune responses. Thus, it is critical to understand the mechanism of hnRNPK regulation and its downstream effects on cancer and other diseases. A number of recent studies have highlighted that several post-translational modifications (PTMs) possibly play an important role in modulating hnRNPK function. Phosphorylation is the most widely occurring PTM in hnRNPK. For example, in vivo analyses of sites such as S116 and S284 illustrate the purpose of PTM of hnRNPK in altering its subcellular localization and its ability to bind target nucleic acids or proteins. Other PTMs such as methylation, ubiquitination, sumoylation, glycosylation and proteolytic cleavage are increasingly implicated in the regulation of DNA repair, cellular stresses and tumour growth. In this review, we describe the PTMs that impact upon hnRNPK function on gene expression programmes and different disease states. This knowledge is key in allowing us to better understand the mechanism of hnRNPK regulation.
Western and indigenous Chinese pig breeds show obvious differences in muscle growth and meat quality; however, the underlying molecular mechanism remains unclear. In this study, proteome analysis of LM between purebred Meishan and Large White pigs was performed by 2-dimensional gel electrophoresis and mass spectrometry. A total of 25 protein spots were differentially expressed in the 2 breeds. The 14 identified proteins could be divided into 4 groups: energy metabolism, defense and stress, myofibrillar filaments, and other unclassified proteins. Quantitative real-time PCR was used to analyze the partly differentially expressed proteins in mRNA level, which revealed a positive correlation between the content of the proteins and their mRNA levels. We also analyzed the mRNA levels of myosin heavy chain isoforms using quantitative real-time PCR. The results indicated that IIa and IIx fibers were elevated in Meishan pigs, whereas the IIb fiber was more highly expressed in Large White pigs. To the best of our knowledge, this was the first proteomics-based investigation of total skeletal muscle protein in different pig breeds, and these results may provide valuable information for understanding the molecular mechanism responsible for breed-specific differences in growth performance and meat quality.
Circular RNA (circRNA) is a novel class of non-coding RNA generated by pre-mRNA back splicing, which is characterized by a closed-loop structure. Although circRNAs were firstly reported decades ago, their regulatory roles have not been discovered until recently. In this review, we discussed the putative biogenesis pathways and regulatory functions of circRNAs. Recent studies showed that circRNAs are abundant in skeletal muscle tissue, and their expression levels are regulated during muscle development and aging. We, thus, characterized the expression profile of circRNAs in skeletal muscle and discussed regulatory functions and mechanism-of-action of specific circRNAs in myogenesis. The future investigation into the roles of circRNAs in both physiological and pathological conditions may provide novel insights in skeletal muscle development and provide new therapeutic strategies for muscular diseases.
The emerging data indicates that non-coding RNAs (ncRNAs) epresent more than the “junk sequences” of the genome. Both miRNAs and long non-coding RNAs (lncRNAs) are involved in fundamental biological processes, and their deregulation may lead to oncogenesis and other diseases. As an important RNA-binding protein (RBP), heterogeneous nuclear ribonucleoprotein K (hnRNPK) is known to regulate gene expression through the RNA-binding domain involved in various pathways, such as transcription, splicing, and translation. HnRNPK is a highly conserved gene that is abundantly expressed in mammalian cells. The interaction of hnRNPK and ncRNAs defines the novel way through which ncRNAs affect the expression of protein-coding genes and form autoregulatory feedback loops. This review summarizes the interactions of hnRNPK and ncRNAs in regulating gene expression at transcriptional and post-transcriptional levels or by changing the genomic structure, highlighting their involvement in carcinogenesis, glucose metabolism, stem cell differentiation, virus infection and other cellular functions. Drawing connections between such discoveries might provide novel targets to control the biological outputs of cells in response to different stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.