AIMSOxidative bioactivation of amodiaquine (AQ) by cytochrome P450s to a reactive quinoneimine is considered as an important mechanism underlying its idiosyncratic hepatotoxicity. However, because internal exposure to its major metabolite Ndesethylamodiaquine (DEAQ) is up to 240-fold higher than AQ, bioactivation of DEAQ might significantly contribute to covalent binding. The aim of the present study was to compare the kinetics of bioactivation of AQ and DEAQ by human liver microsomes (HLM) and to characterize the CYPs involved in bioactivation of AQ and DEAQ.
METHODSGlutathione was used to trap reactive metabolites formed in incubations of AQ and DEAQ with HLM and recombinant human cytochrome P450s (hCYPs). Kinetics of bioactivation of AQ and DEAQ in HLM and involvement of hCYPs were characterized by measuring corresponding glutathione conjugates (AQ-SG and DEAQ-SG) using a high-performance liquid chromatography method.
RESULTSBioactivation of AQ and DEAQ in HLM both exhibited Michaelis-Menten kinetics. For AQ bioactivation, enzyme kinetical parameters were K m , 11.5 AE 2.0 μmol l -1 , V max , 59.2 AE 3.2 pmol min À1 mg À1 and CL int , 5.15 μl min À1 mg À1 . For DEAQ, parameters for bioactivation were K m , 6.1 AE 1.3 μmol l -1 , V max , 5.5 AE 0.4 pmol min À1 mg À1 and CL int 0.90 μl min À1 mg À1 . Recombinant hCYPs and inhibition studies with HLM showed involvement of CYP3A4, CYP2C8, CYP2C9 and CYP2D6 in bioactivation.
CONCLUSIONSThe major metabolite DEAQ is likely to be quantitatively more important than AQ with respect to hepatic exposure to reactive metabolites in vivo. High expression of CYP3A4, CYP2C8, CYP2C9, and CYP2D6 may be risk factors for hepatotoxicity caused by AQ-therapy.
British Journal of Clinical PharmacologyBr J Clin Pharmacol (2017) 83 572-583 572
Nevirapine (NVP) is a non-nucleoside reverse transcriptase-inhibitor, which is associated with severe idiosyncratic skin rash and hepatotoxicity. These adverse drug reactions are believed to be mediated by the formation of epoxides and/or quinone methide formed by oxidative metabolism by P450s and 12-sulfoxyl-NVP formed by sequential 12-hydroxylation and O-sulfonation. Although different GSH-conjugates and corresponding mercapturic acids have been demonstrated previously in vitro and in vivo, the role of the glutathione S-transferases in the inactivation of the different reactive metabolites has not been studied so far. In the present study the activity of 10 recombinant human glutathione S-transferases (GSTs) in the detoxification of the different reactive metabolites of NVP was studied. The results show that GSTP1-1 is a highly active catalyst of GSH-conjugation of the oxidative metabolites of NVP, even at high GSH-concentration. Experiments with trideuterated NVP suggest involvement of a reactive epoxide rather than quinone methide in the formation of the GSH-conjugate formed after oxidative bioactivation. GSH-conjugation of 12-sulfoxyl-NVP forming NVP-12-GSH was only catalyzed by GSTM1-1, GSTA1-1, and GSTA3-3. Although the exact expression levels of these enzymes in the skin is unknown, the relatively low activity of this catalysis makes it unlikely that GSTs can provide significant protection against this metabolite. However, since NVP-12-GSH is specifically formed via the 12-sulfoxyl-NVP, its corresponding urinary mercapturic acid can be considered as a biomarker for recent internal exposure to this protein-reactive sulfate. However, it has to be taken into account that 12-sulfoxyl-NVP is not completely trapped by GSH and that rates of bioinactivation will differ between patients due to variability in expression of GSTM1, GSTA1, and GSTA3.
Detoxicating
enzymes NAD(P)H:quinone oxidoreductase 1 (NQO1) and
NRH:quinone oxidoreductase 2 (NQO2) catalyze the two-electron reduction
of quinone-like compounds. The protective role of the polymorphic
NQO1 and NQO2 enzymes is especially of interest in the liver as the
major site of drug bioactivation to chemically reactive drug metabolites.
In the current study, we quantified the concentrations of NQO1 and
NQO2 in 20 human liver donors and NQO1 and NQO2 activities with quinone-like
drug metabolites. Hepatic NQO1 concentrations ranged from 8 to 213
nM. Using recombinant NQO1, we showed that low nM concentrations of
NQO1 are sufficient to reduce synthetic amodiaquine and carbamazepine
quinone-like metabolites in vitro. Hepatic NQO2 concentrations
ranged from 2 to 31 μM. NQO2 catalyzed the reduction of quinone-like
metabolites derived from acetaminophen, clozapine, 4′-hydroxydiclofenac,
mefenamic acid, amodiaquine, and carbamazepine. The reduction of the
clozapine nitrenium ion supports association studies showing that
NQO2 is a genetic risk factor for clozapine-induced agranulocytosis.
The 5-hydroxydiclofenac quinone imine, which was previously shown
to be reduced by NQO1, was not reduced by NQO2. Tacrine was identified
as a potent NQO2 inhibitor and was applied to further confirm the
catalytic activity of NQO2 in these assays. While the in vivo relevance of NQO2-catalyzed reduction of quinone-like metabolites
remains to be established by identification of the physiologically
relevant co-substrates, our results suggest an additional protective
role of the NQO2 protein by non-enzymatic scavenging of quinone-like
metabolites. Hepatic NQO1 activity in detoxication of quinone-like
metabolites becomes especially important when other detoxication pathways
are exhausted and NQO1 levels are induced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.