Chromatic dispersion equalization (CDE) in coherent optical communication systems is extremely critical for subsequent digital signal processing (such as frequency offset estimation and carrier phase recovery). Various methods mentioned in the published literature are not satisfactory when the signal bandwidth is limited. This paper proposes a way of using singular value decomposition least square (SVDLS) to obtain the optimal tap weight of the CDE filter and a method to introduce the adaptive mutation particle swarm optimizer (AMPSO) algorithm into the CDE. We show that the two proposed approaches are based on the best approximation of the frequency domain response of the designed and ideal CDE filter. Compared with the traditional CDE method, which needs to be implemented in the full frequency band, the two methods can be implemented in the narrow frequency band. The simulation shows that the effective bandwidth of the baseband signal is limited by squared-root-raised-cosine (SRRC) pulse shaping with a roll-off factor of 0.25 in different modulation formats (DP-QPSK, DP-16 QAM, DP-64 QAM) when the number of taps of the filter is 131, which is 37.5% less than the full frequency band. The designed filter is superior to the existing filter in terms of filtering effect and implementation complexity.
In optical communication systems, coherent detection is a standard method. The received signal enters the digital domain after passing through a time-interleaved analog-to-digital converter (TI-ADC). However, the time delay of the ADC brings noise into the signal, which decreases the signal quality; therefore, ADC calibration is essential. At present, there are many calibration methods for time delay, but their performances are not satisfactory at a high sampling frequency. This paper presents a method of time delay estimation and calibration in a coherent optical communication system. First, the expected maximum (EM) method is used to roughly estimate the time delay and then transfer the estimated value into the trained back propagation (BP) neural network to generate more accurate results. Second, the sampled signal is reconstructed, and then a finite impulse response (FIR) filter is designed to compensate for the time delay. There are several advantages of the proposed method compared with previous works: the convergence with a BP network is faster, the estimation accuracy is higher, and the calibration does not affect the sample operation of the ADC working in the background mode. In addition, the proposed calibration method does not need additional circuits and its low power consumption provides more sources for dispersion compensation, error correction, and other subsequent operations in the coherent optical communication system. Based on the quadrature phase shift keying (QPSK) system, the proposed method was implemented in a 16-channel/8-bit, 40-GS/s ADC. After estimation and calibration, the relative error of estimation was below 1%, the signal noise distortion rate (SNDR) reached 55.9 dB, the spurious free dynamic range (SFDR) improved to 61.2 dB, and the effective number of bits (ENOB) was 6.7 bits. The results demonstrate that the proposed method has a better calibration performance than other methods.
This paper proposes a novel and efficient low-complexity chromatic dispersion equalizer (CDE) based on finite impulse response (FIR) filter architecture for polarization-multiplexed coherent optical communication systems. The FIR filter coefficients are optimized by weights to reduce the energy leakage caused by the truncation effect, and then quantization is used uniformly to reduce the number of real number additions and real number multiplications by utilizing the diversity of the quantized coefficients. Using Optisystem 15 to build a coherent optical communication system for simulation and experimental demonstration, the results show that after the filter coefficients are optimized by weights. Compared with the time-domain chromatic dispersion equalizer (TD-CDE), the proposed design has a lower bit error rate (BER) and better equalization effect. When the transmission distance is 4000 km and the system quantization stages M = 16, the multiplication operation and addition operations reduce computing resources by 99% and 43%, and the BER only increases by 5%. Compared with frequency-domain chromatic dispersion equalizer (FD-CDE), widely used in long-distance communication, the multiplication operation reduces computing resources by 30%. The proposed method provides a new idea for high-performance CDE in long-distance coherent optical communication systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.