Using molecular dynamics simulation, we study shear banding of entangled polymer melts under a steady shear. The steady shear stress vs shear rate curve exhibits a plateau spanning nearly two decades of shear rates in which shear banding is observed, and the steady shear stress remains unchanged after switching the shear rates halfway in the range of shear rates within the plateau region. In addition, we find strong correlation in the location of the shear bands between different shear rates starting from the same microstate configurations at equilibrium, which suggests the importance of the inherent structural heterogeneity in the entangled polymer network for shear banding. Furthermore, for the steady shear bands persisting to the longest simulated time of 9.0τ d0 (disengagement time), the shear rate in the slow band and the relative proportion of the bands do not change very much with the increase of imposed shear rate, but the shear rate in the fast band increases approximately in proportion to the imposed shear rates, in contradiction to the lever rule.
Using molecular dynamics simulation, we investigate the evolution of chain conformation, stress relaxation, and fracture for a polymer melt between two walls after step shear. We find that the characteristic overlap time for the reduced relaxation moduli and the time that the stretched primitive chain retracts to its equilibrium length are both much longer than the Rouse time. Importantly, we observe significant fracture-like flow after shear cessation. While there is considerable randomness in the location of the fracture plane and the magnitude of displacement from sample to sample, our analysis suggests that the randomness is not due to thermal noise, but may reflect inherent structural and dynamic heterogeneity in the entangled polymer network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.