BackgroundCyanobacteria account for 20–30% of Earth's primary photosynthetic productivity and convert solar energy into biomass-stored chemical energy at the rate of ∼450 TW [1]. These single-cell microorganisms are resilient predecessors of all higher oxygenic phototrophs and can be found in self-sustaining, nitrogen-fixing communities the world over, from Antarctic glaciers to the Sahara desert [2].Methodology/Principal FindingsHere we show that diverse genera of cyanobacteria including biofilm-forming and pelagic strains have a conserved light-dependent electrogenic activity, i.e. the ability to transfer electrons to their surroundings in response to illumination. Naturally-growing biofilm-forming photosynthetic consortia also displayed light-dependent electrogenic activity, demonstrating that this phenomenon is not limited to individual cultures. Treatment with site-specific inhibitors revealed the electrons originate at the photosynthetic electron transfer chain (P-ETC). Moreover, electrogenic activity was observed upon illumination only with blue or red but not green light confirming that P-ETC is the source of electrons. The yield of electrons harvested by extracellular electron acceptor to photons available for photosynthesis ranged from 0.05% to 0.3%, although the efficiency of electron harvesting likely varies depending on terminal electron acceptor.Conclusions/SignificanceThe current study illustrates that cyanobacterial electrogenic activity is an important microbiological conduit of solar energy into the biosphere. The mechanism responsible for electrogenic activity in cyanobacteria appears to be fundamentally different from the one exploited in previously discovered electrogenic bacteria, such as Geobacter, where electrons are derived from oxidation of organic compounds and transported via a respiratory electron transfer chain (R-ETC) [3], [4]. The electrogenic pathway of cyanobacteria might be exploited to develop light-sensitive devices or future technologies that convert solar energy into limited amounts of electricity in a self-sustainable, CO2-free manner.
The current study introduces an aerobic single-chamber photosynthetic microbial fuel cell (PMFC). Evaluation of PMFC performance using naturally growing fresh-water photosynthetic biofilm revealed a weak positive light response, that is, an increase in cell voltage upon illumination. When the PMFC anodes were coated with electrically conductive polymers, the rate of voltage increased and the amplitude of the light response improved significantly. The rapid immediate positive response to light was consistent with a mechanism postulating that the photosynthetic electron-transfer chain is the source of the electrons harvested on the anode surface. This mechanism is fundamentally different from the one exploited in previously designed anaerobic microbial fuel cells (MFCs), sediment MFCs, or anaerobic PMFCs, where the electrons are derived from the respiratory electron-transfer chain. The power densities produced in PMFCs were substantially lower than those that are currently reported for conventional MFC (0.95 mW/m(2) for polyaniline-coated and 1.3 mW/m(2) for polypyrrole-coated anodes). However, the PMFC did not depend on an organic substrate as an energy source and was powered only by light energy. Its operation was CO(2)-neutral and did not require buffers or exogenous electron transfer shuttles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.