Collaborative robots (cobots) open up new avenues in the fields of industrial robotics and physical Human-Robot Interaction (pHRI) as they are suitable to work in close approximation and in collaboration with humans. The integration and control of variable stiffness elements allow inherently safe interaction. Apart from notable work on Variable Stiffness Actuators, the concept of Variable-Stiffness-Link (VSL) manipulators promises safety improvements in cases of unintentional physical collisions. However, position control of these type of robotic manipulators is challenging for critical task-oriented motions (e.g., pick and place). Hence, the study of open-loop position control for VSL robots is crucial to achieve high levels of safety, accuracy and hardware cost-efficiency in pHRI applications. In this paper, we propose a hybrid, learning based kinematic modelling approach to improve the performance of traditional open-loop position controllers for a modular, collaborative VSL robot. We show that our approach improves the performance of traditional open-loop position controllers for robots with VSL and compensates for position errors, in particular, for lower stiffness values inside the links: Using our upgraded and modular robot, two experiments have been carried out to evaluate the behaviour of the robot during taskoriented motions. Results show that traditional model-based kinematics are not able to accurately control the position of the end-effector: the position error increases with higher loads and lower pressures inside the VSLs. On the other hand, we demonstrate that, using our approach, the VSL robot can outperform the position control compared to a robotic manipulator with 3D printed rigid links.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.