Impairment of synaptic connections is likely to underlie the subtle amnesic changes occurring at the early stages of Alzheimer s Disease (AD). beta-amyloid (A beta), a peptide produced in high amounts in AD, is known to reduce Long-Term Potentiation (LTP), a cellular correlate of learning and memory. Indeed, LTP impairment caused by A beta is a useful experimental paradigm for studying synaptic dysfunctions in AD models and for screening drugs capable of mitigating or reverting such synaptic impairments. Studies have shown that A beta produces the LTP disruption preferentially via its oligomeric form. Here we provide a detailed protocol for impairing LTP by perfusion of oligomerized synthetic A beta1-42 peptide onto acute hippocampal slices. In this video, we outline a step-by-step procedure for the preparation of oligomeric A beta(1-42;). Then, we follow an individual experiment in which LTP is reduced in hippocampal slices exposed to oligomerized A beta(1-42;) compared to slices in a control experiment where no A beta(1-42;) exposure had occurred.
Insulin, the most potent anabolic hormone, is critical for somatic growth and metabolism in vertebrates. Type 2 diabetes, which is the primary cause of hyperglycemia, results from an inability of insulin to signal glycolysis and gluconeogenesis. Our previous study showed that double knockout of insulin receptor a ( insra) and b ( insrb) caused β-cell hyperplasia and lethality from 5 to 16 days postfertilization (dpf) (Yang BY, Zhai G, Gong YL, Su JZ, Han D, Yin Z, Xie SQ. Sci Bull (Beijing) 62: 486-492, 2017). In this study, we characterized the physiological roles of Insra and Insrb, in somatic growth and fueling metabolism, respectively. A high-carbohydrate diet was provided for insulin receptor knockout zebrafish from 60 to 120 dpf to investigate phenotype inducement and amplification. We observed hyperglycemia in both insra-/- fish and insrb-/- fish. Impaired growth hormone signaling, increased visceral adiposity, and fatty liver were detected in insrb-/- fish, which are phenotypes similar to the lipodystrophy observed in mammals. More importantly, significantly diminished protein levels of P-PPARα, P-STAT5, and IGF-1 were also observed in insrb-/- fish. In insra-/- fish, we observed increased protein content and decreased lipid content of the whole body. Taken together, although Insra and Insrb show overlapping roles in mediating glucose metabolism through the insulin-signaling pathway, Insrb is more prone to promoting lipid catabolism and protein synthesis through activation of the growth hormone-signaling pathway, whereas Insra primarily acts to promote lipid synthesis via glucose utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.