Source quantification of heavy metals in farmland is essential for developing and implementing restoration strategies. We used various data analyses to identify and quantify sources of arsenic, cadmium, chromium, copper, mercury, nickel, lead, and zinc in vegetable-growing soils. A new method of collaborative assessment, combining soil environmental quality and agricultural product safety, showed that approximately 5.20% of cultivation systems were multi-contaminated by heavy metals. The nonlinear relationship between pollution sources and the comprehensive contamination situation was established, deriving from a fitted bivariate model. The model revealed that anthropogenic sources and natural origins accounted for 65.8−86.0 and 34.2−14.0% of the comprehensive pollution, respectively. These results suggested that both human activities and natural factors contributed to the decline of local soil quality and the influence of the former was more substantial than that of the latter.
The Yellow River Delta (YRD) region is an important production base in Shandong Province. It encompasses an array of diversified crop systems, including the corn–wheat rotation system (Wheat–Corn), soybean–corn rotation system (Soybean–Corn), fruits or vegetables system (Fruit), cotton system (Cotton) and rice system (Rice). In this study, the communities of ammonia oxidizer–, denitrifier– and nitrogen (N)–fixing bacteria in those cropping systems were investigated by Illumina Miseq sequencing. We found that Rice soil exhibited significantly higher diversity indices of investigated N–cycling microbial communities than other crop soils, possibly due to its high soil water content. Wheat–Corn soils had higher abundances of nitrification gene amoA and denitrification genes nirK and nirS, and exhibited higher soil potential nitrification rate (PNR), compared with Soybean–Corn, Cotton and Fruit soils. Consistently, redundancy analysis (RDA) showed that soil water content (SWC), electrical conductivity (EC), and total nitrogen (TN) were the most important influencing factors of the diversity and structure of the investigated N–cycling microbial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.