Tartary buckwheat (Fagopyrum tataricum) is an important pseudocereal crop that is strongly adapted to growth in adverse environments. Its gluten-free grain contains complete proteins with a well-balanced composition of essential amino acids and is a rich source of beneficial phytochemicals that provide significant health benefits. Here, we report a high-quality, chromosome-scale Tartary buckwheat genome sequence of 489.3 Mb that is assembled by combining whole-genome shotgun sequencing of both Illumina short reads and single-molecule real-time long reads, sequence tags of a large DNA insert fosmid library, Hi-C sequencing data, and BioNano genome maps. We annotated 33 366 high-confidence protein-coding genes based on expression evidence. Comparisons of the intra-genome with the sugar beet genome revealed an independent whole-genome duplication that occurred in the buckwheat lineage after they diverged from the common ancestor, which was not shared with rosids or asterids. The reference genome facilitated the identification of many new genes predicted to be involved in rutin biosynthesis and regulation, aluminum stress resistance, and in drought and cold stress responses. Our data suggest that Tartary buckwheat's ability to tolerate high levels of abiotic stress is attributed to the expansion of several gene families involved in signal transduction, gene regulation, and membrane transport. The availability of these genomic resources will facilitate the discovery of agronomically and nutritionally important genes and genetic improvement of Tartary buckwheat.
It has become increasingly clear that the increase in corticosteroid levels, e.g. after a brief stressor induce molecular and cellular changes in brain, including the hippocampal formation. These effects eventually result in behavioral adaptation. Prolonged exposure to stress, though, may lead to mal-adaptation and even be a risk factor for diseases like major depression in genetically predisposed individuals. We conducted a series of experiments where changes in brain function were examined after 3 weeks of unpredictable stress. After unpredictable stress, inhibitory input to neurons involved in the hypothalamus-pituitary-adrenal (HPA) axis regulation was suppressed, which may dysregulate the axis and lead to overexposure of the brain to glucocorticoids. Furthermore, glutamate transmission in the dentate gyrus (DG) was enhanced, possibly through transcriptional regulation of receptor subunits. Combined with enhanced calcium channel expression this could increase vulnerability to cell death. Neurogenesis and apoptosis in the dentate were diminished. Synaptic plasticity was suppressed both in the dentate and CA1 area. Collectively, these effects may give rise to deficits in memory formation. Finally, we observed reduced responses to serotonin in the CA1 area, which could contribute to the onset of symptoms of depression in predisposed individuals. All of these endpoints provide potential targets for novel treatment strategies of stress-related brain disorders.
G-protein-coupled receptors (GPCRs) have been implicated in the tumorigenesis and metastasis of human cancers and are considered amongst the most desirable targets for drug development. Utilizing a robust quantitative PCR array, we quantified expression of 94 human GPCRs, including 75 orphan GPCRs and 19 chemokine receptors, and 36 chemokine ligands, in 40 melanoma metastases from different individuals and benign nevi. Inter-metastatic site comparison revealed that orphan GPR174 and CCL28 are statistically significantly overexpressed in subcutaneous metastases, while P2RY5 is overexpressed in brain metastases. Comparison between metastases (all three metastatic sites) and benign nevi revealed that 16 genes, including six orphan receptors (GPR18, GPR34, GPR119, GPR160, GPR183 and P2RY10) and chemokine receptors CCR5, CXCR4, and CXCR6, were statistically significantly differentially expressed. Subsequent functional experiments in yeast and melanoma cells indicate that GPR18, the most abundantly overexpressed orphan GPCR in all melanoma metastases, is constitutively active and inhibits apoptosis, indicating an important role for GPR18 in tumor cell survival. GPR18 and five other orphan GPCRs with yet unknown biological function may be considered potential novel anticancer targets in metastatic melanoma.
MicroRNAs (miRNAs), non-coding RNAs regulating gene expression, are frequently aberrantly expressed in human cancers. Next-generation deep sequencing technology enables genome-wide expression profiling of known miRNAs and discovery of novel miRNAs at unprecedented quantitative and qualitative accuracy. Deep sequencing was performed on 11 fresh frozen clear cell renal cell carcinoma (ccRCC) and adjacent non-tumoral renal cortex (NRC) pairs, 11 additional frozen ccRCC tissues, and 2 ccRCC cell lines (n = 35). The 22 ccRCCs patients belonged to 3 prognostic sub-groups, i.e. those without disease recurrence, with recurrence and with metastatic disease at diagnosis. Thirty-two consecutive samples (16 ccRCC/NRC pairs) were used for stem-loop PCR validation. Novel miRNAs were predicted using 2 distinct bioinformatic pipelines. In total, 463 known miRNAs (expression frequency 1–150,000/million) were identified. We found that 100 miRNA were significantly differentially expressed between ccRCC and NRC. Differential expression of 5 miRNAs was confirmed by stem-loop PCR in the 32 ccRCC/NRC samples. With respect to RCC subgroups, 5 miRNAs discriminated between non-recurrent versus recurrent and metastatic disease, whereas 12 uniquely distinguished non-recurrent versus metastatic disease. Blocking overexpressed miR-210 or miR-27a in cell line SKCR-7 by transfecting specific antagomirs did not result in significant changes in proliferation or apoptosis. Twenty-three previously unknown miRNAs were predicted in silico. Quantitative genome-wide miRNA profiling accurately separated ccRCC from (benign) NRC. Individual differentially expressed miRNAs may potentially serve as diagnostic or prognostic markers or future therapeutic targets in ccRCC. The biological relevance of candidate novel miRNAs is unknown at present.
MicroRNAs (miRNAs) are small RNAs that control gene expression, and are involved in the regulation of fundamental biological processes including development, cell differentiation, proliferation, and apoptosis. miRNAs regulate gene expression in normal hematopoiesis, and aberrant miRNA expression might contribute to leukomogenesis. Specifically, miR-21 is abundantly expressed in various tumors including leukemia and lymphoma, and is functionally involved in oncogenic processes. We investigated a role for miR-21 in Sézary Syndrome (SS), a cutaneous T-cell lymphoma (CTCL) with CD4+ tumor cells (Sézary cells) present in the skin, lymph nodes, and peripheral blood. It was shown previously that SS is characterized by constitutively activated signal transducer and activator of transcription 3 (STAT3) signaling. In this study we show by chromatin immunoprecipitation that miR-21 is a direct STAT3 target in Sézary cells. Stimulation of Sézary cells or healthy CD4+ T cells with the common-γ chain cytokine IL-21 results in a strong activation of STAT3, and subsequent upregulation of miR-21 expression. Both pri- and mature miR-21 expression are increased in Sézary cells when compared with CD4+ T cells from healthy donors. Silencing of miR-21 in Sézary cells results in increased apoptosis, suggesting a functional role for miR-21 in the leukomogenic process. Consequently, miR-21 might represent a therapeutic target for the treatment of SS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.