Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. The ML techniques have been developed to analyze high-throughput data with a view to obtaining useful insights, categorizing, predicting, and making evidence-based decisions in novel ways, which will promote the growth of novel applications and fuel the sustainable booming of AI. This paper undertakes a comprehensive survey on the development and application of AI in different aspects of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. The challenges that each discipline of science meets, and the potentials of AI techniques to handle these challenges, are discussed in detail. Moreover, we shed light on new research trends entailing the integration of AI into each scientific discipline. The aim of this paper is to provide a broad research guideline on fundamental sciences with potential infusion of AI, to help motivate researchers to deeply understand the state-of-the-art applications of AI-based fundamental sciences, and thereby to help promote the continuous development of these fundamental sciences.
The Global Navigation Satellite System (GNSS) cannot achieve accurate positioning and navigation in the indoor environment. Therefore, efficient indoor positioning technology has become a very active research topic. Bluetooth beacon positioning is one of the most widely used technologies. Because of the time-varying characteristics of the Bluetooth received signal strength indication (RSSI), traditional positioning algorithms have large ranging errors because they use fixed path loss models. In this paper, we propose an RSSI real-time correction method based on Bluetooth gateway which is used to detect the RSSI fluctuations of surrounding Bluetooth nodes and upload them to the cloud server. The terminal to be located collects the RSSIs of surrounding Bluetooth nodes, and then adjusts them by the RSSI fluctuation information stored on the server in real-time. The adjusted RSSIs can be used for calculation and achieve smaller positioning error. Moreover, it is difficult to accurately fit the RSSI distance model with the logarithmic distance loss model due to the complex electromagnetic environment in the room. Therefore, the back propagation neural network optimized by particle swarm optimization (PSO-BPNN) is used to train the RSSI distance model to reduce the positioning error. The experiment shows that the proposed method has better positioning accuracy than the traditional method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.