Structural stress and deformation monitoring and analysis were carried out for the 54 m long-span steel roof truss. To ensure the safety of the construction process, the stress and deformation of the steel roof trusses were monitored throughout the construction process. The numerical modeling of the structures with six different working conditions was carried out, and the points with the most critical values of stress and deformation were found. This work provides a theoretical basis for field monitoring during and after construction. The results show that the maximum vertical displacement of a steel roof truss during all modeled working conditions and the maximum measured displacement are within the Chinese building code’s requirements. The maximum value of stress found during analysis of the structure during the construction process and the maximum measured stress are much less than the yield stress. The structural stress remains in the elastic range. The reasons for the differences between the calculated and measured results were analyzed.
A column dust scrubber based on an orifice plate is developed for small and medium‐sized enterprises in China, which urgently need small‐volume, large‐flow scrubbers. The scrubber uses an orifice plate to evenly distribute the gas flow, which forms a uniform and stable impact on the liquid phase. As a result, dust removal via intensified gas‐liquid mixing can be achieved. A laboratory orifice plate scrubber model is developed, prototyped, and preliminarily studied considering the working process of the scrubber (mixed gas‐liquid flow pattern), liquid level, gas flow rate, pressure drop characteristics, dust removal efficiency, etc. The scrubber can achieve a good gas‐liquid mixing state when it is in a stable liquid column flow pattern. The drag coefficient of the scrubber is affected by the discharge of the gas stream to the liquid phase.
Typically, the upper part of the roof a gymnasium building is a radial inverted triangular truss structure, and the lower part is a cable structure. They are connected by vertical braces to form a self-balancing structural system. The whole roof is supported by a complex, spatial, prestressed structure comprising tilted Y-shaped laced columns. Such structures rely on the integrity of the form and the application of prestress to achieve the best performance; it is in an extremely unstable state during construction. In order to study the mechanical behavior of the structure in this process, finite element software was used to analyze the cumulative slip of the structure and the construction process of cable tension, and the simulation values were compared to the actual monitoring values. The stress and deformation of the structure in different construction stages were investigated, and a reasonable structural unloading scheme was put forward. The study results showed that the stiffness of the long-span space truss suspended dome structure gradually increased with the structural integrity during construction, and the vertical deformation decreased from 25.4 mm to 19.26 mm with the construction process. The location and magnitude of the structure’s maximum internal force and maximum stress varied greatly compared to the static analysis when considering the construction process effects. Hence, conducting a construction process analysis is necessary. The construction technology of symmetrical rotating cumulative slip proposed in this paper has the advantages of a short construction duration, safe and stable construction process, etc., providing technical references for similar engineering constructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.