Oxidative stress from reactive oxygen species (ROS) is a reperfusion injury factor that can lead to cell damage and death. Here, ultrasmall iron-gallic acid coordination polymer nanodots (Fe-GA CPNs) were developed as antioxidative neuroprotectors for ischemia stroke therapy guided by PET/MR imaging. As proven by the electron spin resonance spectrum, the ultrasmall Fe-GA CPNs with ultrasmall size, scavenged ROS efficiently. In vitro experiments revealed that Fe-GA CPNs could protect cell viability after being treated with hydrogen peroxide (H 2 O 2 ) and displayed the effective elimination of ROS by Fe-GA CPNs, which subsequently restores oxidation balance. When analyzing the middle cerebral artery occlusion model, the neurologic damage displayed by PET/MR imaging revealed a distinct recovery after treatment with Fe-GA CPNs, which was proved by 2,3,5-triphenyl tetrazolium chloride staining. Furthermore, immunohistochemistry staining indicated that Fe-GA CPNs inhibited apoptosis through protein kinase B (Akt) restoration, whereas western blot and immunofluorescence indicated the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) pathway following Fe-GA CPNs application. Therefore, Fe-GA CPNs exhibit an impressive antioxidative and neuroprotective role via redox homeostasis recovery by Akt and Nrf2/HO-1 pathway activation, revealing its potential for clinical ischemia stroke treatment.
Chemotherapy is an important method for the treatment of lung cancer, but multidrug resistance (MDR) greatly reduces the efficacy. The superfamily of ATP-binding cassette (ABC) transport proteins is related to MDR. As a subfamily of ABC proteins, ABCG2/BCRP (breast cancer resistance protein, BCRP) is considered a major player in the development of cancer MDR. For the stratification of chemotherapeutic choices, we constructed Cy5.5- or 89Zr-labeled ABCG2-targeted monoclonal antibody (mAb) ABCG2-PKU1 for noninvasive evaluation of ABCG2 expression in lung cancer xenograft models. ABCG2 expression was screened in H460/MX (mitoxantrone resistant), H460, and H1299 human lung cancer cell lines using Western blotting. ELISA, flow cytometry, and cell immunofluorescent staining were used to evaluate the binding ability of ABCG2-PKU1 to ABCG2 antigen. Lung cancer murine xenograft models were built for in vivo experiments. ABCG2-PKU1 was labeled with Cy5.5 (Cy5.5-ABCG2) for fluorescent imaging and radiolabeled with 89Zr (89Zr-DFO-ABCG2) for immunoPET imaging following the conjugation with p-SCN-deferoxamine (DFO). In vivo imaging was performed in lung cancer models at 2, 24, 48, 72, 96, 120, 144, and 168 h postinjection. Ex vivo biodistribution was conducted after the terminal time point of imaging. Finally, tissue immunohistochemical staining was used to evaluate the tumor expression of ABCG2. Western blotting showed that the H460/MX cells had a high ABCG2 expression level whereas H460 and H1299 had moderate and low levels. ELISA, flow cytometry, and cell immunofluorescent staining results validated the good binding affinity between ABCG2-PKU1 and ABCG2. The H460/MX and H460 cells were used to build positive lung cancer models, and H1299 cells were used to build negative models. The fluorescent imaging showed that the tumor average radiant efficiency of Cy5.5-ABCG2 reached the maximum at 72 and 120 h in H460/MX and H460 respectively (n = 3, P < 0.01). The tumor uptake of Cy5.5-ABCG2 in H1299 (n = 3) was significantly lower than H460/MX and H460 (P < 0.01). ImmunoPET imaging showed that the tumor uptake of 89Zr-DFO-ABCG2 in H460/MX was significantly higher than H460, with a maximum of 4.15 ± 0.41 %ID/g and 2.81 ± 0.24 %ID/g at 168 and 144 h, respectively (n = 5, P < 0.01). The H1299 tumors showed significantly lower uptake than H460/MX and H460 (n = 5, P < 0.01). The radioactive uptake of 89Zr-DFO-ABCG2 among three groups in the heart, liver, and kidney gradually decreased over time. Ex vivo biodistribution verified the differential tumor uptake among the three groups (P < 0.01). Immunohistochemical staining revealed that the H460/MX tumor had the highest expression of ABCG2, whereas H460 and H1299 had the moderate and lowest expression, respectively. Therefore, in this study, fluorescent and immunoPET imaging of lung cancer MDR models using Cy5.5-ABCG2 and 89Zr-DFO-ABCG2 noninvasively evaluated the differential expression of ABCG2, which are expected to be used for the diagnosis and the selection for clinical treatment opti...
Pancreatic choriocarcinoma is a rare disease, and concurrent hepatic metastases have not previously been reported. We report a case of a 46-year-old woman with significantly elevated human chorionic gonadotropin β levels, and 18 F-FDG PET/CT demonstrated FDG-avid lesions in the pancreatic head, liver, and lymph nodes. The initial diagnosis of pancreatic choriocarcinoma with metastases was made and further confirmed by PET/CT-guided biopsy. 125 I seeds were then implanted to treat the pancreatic choriocarcinoma lesions, which effectively reduced the tumor size. New hepatic metastases have been observed after 5 months, and this case had an overall survival of 10 months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.