Proton exchange membrane fuel cells (PEMFCs) suffer severe performance loss in the high current density (HCD) region as Pt‐loading decreases. A smaller electrocatalyst size inducing a higher electrochemically active surface area (ECSA) is critical for solving this issue. However, the poor electrocatalytic activity and stability of sub‐2 nm nanoclusters limit the potential to reduce their size. In this study, 1.69 nm Co‐doped Pt nanoclusters with a large ECSA (116.19 m2 gPt–1) are synthesized. The mass activity (MA) (0.579 A mgPt–1) and stability (9% MA loss after 30k potential cycling) refresh the record of sub‐2 nm nanoclusters. The structural characterization and theoretical calculations reveal that doping reduces the total energy required to stabilize the nanoclusters. Dopant tailoring of the d‐band center and vacancy formation energy account for the activity and stability enhancement, respectively. Due to the larger ECSA and MA induced by doping, HCD voltage loss due to lower Pt‐loading is significantly reduced compared with commercial Pt/C. The peak power density of low‐Pt‐loading PEMFCs (0.075 mgPt cmMEA–2) with a doped nanocluster cathode is 0.811 W cm–2 (H2–air condition), which far exceeds commercial Pt/C (0.5 W cm–2) and that of most reported electrocatalysts.
The spin-and energy-dependent interface reflectivity of a ferromagnetic (FM) film in contact with a nonmagnetic (NM) film is calculated using a first-principles transport method and incorporated into the superdiffusive spin transport model to study the femtosecond laser-induced ultrafast demagnetization of Fe|NM and Ni|NM (NM= Au, Al & Pt) bilayers. By comparing the calculated demagnetization with transparent and real interfaces, we demonstrate that the spin-dependent reflection of hot electrons has a noticeable influence on the ultrafast demagnetization and the associated terahertz electromagnetic radiation. In particular, a spin filtering effect is found at the Fe|NM interface that increases the spin current injected into the NM metal, which enhances both the resulting demagnetization and the resulting THz emission. This suggests that the THz radiation can be optimized by tailoring the interface, indicating a very large tunability. arXiv:1911.08796v2 [cond-mat.mes-hall]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.