Systemic lupus erythematosus (SLE), often considered the prototype of autoimmune diseases, is characterized by over-activation of the autoimmune system with abnormal functions of innate and adaptive immune cells and the production of a large number of autoantibodies against nuclear components. Given the highly complex and heterogeneous nature of SLE, the pathogenesis of this disease remains incompletely understood and is presumed to involve both genetic and environmental factors. Currently, disturbance of the gut microbiota has emerged as a novel player involved in the pathogenesis of SLE. With in-depth research, the understanding of the intestinal bacteria-host interaction in SLE is much more comprehensive. Recent years have also seen an increase in metabolomics studies in SLE with the attempt to identify potential biomarkers for diagnosis or disease activity monitoring. An intricate relationship between gut microbiome changes and metabolic alterations could help explain the mechanisms by which gut bacteria play roles in the pathogenesis of SLE. Here, we review the role of microbiota dysbiosis in the aetiology of SLE and how intestinal microbiota interact with the host metabolism axis. A proposed treatment strategy for SLE based on gut microbiome (GM) regulation is also discussed in this review. Increasing our understanding of gut microbiota and their function in lupus will provide us with novel opportunities to develop effective and precise diagnostic strategies and to explore potential microbiota-based treatments for patients with lupus.
Excessive accumulation of cholesterol in macrophages results in a transformation of the macrophage into foam cells and eventually causes atherosclerosis ( 1, 2 ). The pathogenic process represents a chronic and complicated interaction involving multiple factors. Reverse cholesterol transport (RCT) is a process by which extrahepatic (peripheral) cholesterol is returned to the liver for excretion in the bile and ultimately the feces, thus reducing the risk of atherosclerosis ( 3, 4 ). Although there have been great efforts in discovering drugs against atherosclerosis ( 5 ), the output has been unsatisfactory. Removal of excess cholesterol from macrophage foam cells is considered to be one of the therapeutic strategies ( 6 ). The crucial cellular transporters and receptors that relate to cholesterol effl ux include,
Mesenchymal stem cells derived from adipose tissue (ASC) have immune regulatory function, which makes them interesting candidates for cellular therapy. ASC cultures are however heterogeneous in phenotype. It is unclear whether all ASC contribute equally to immunomodulatory processes. ASC are also responsive to cytokine stimulation, which may affect the ratio between more and less potent ASC populations. In the present study, we determined IL-6 receptor (CD126 and CD130 subunits) and IFN-γ receptor (CD119) expression on ASC by flow cytometry. The production of IL-6 and IFN-γ was measured by ELISA and the frequency of IL-6 and IFN-γ secreting cells by ELISPOT. The results showed that ASC did not express CD126, and only 10–20% of ASC expressed CD130 on their surface, whereas 18–31% of ASC expressed CD119. ASC produced high levels of IL-6 and 100% of ASC were capable of secreting IL-6. Stimulation by IFN-γ or TGF-β had no effect on IL-6 secretion by ASC. IFN-γ was produced by only 1.4% of ASC, and TGF-β significantly increased the frequency to 2.7%. These results demonstrate that ASC cultures are heterogeneous in their cytokine secretion and receptor expression profiles. This knowledge can be employed for selection of potent, cytokine-producing, or responsive ASC subsets for cellular immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.