This review highlights the molecular design strategy of β-galactosidase-activatable probes from turn-on mode to ratiometric mode, from ACQ to AIE-active probes, from NIR-I to NIR-II imaging and dual-mode of chemo-fluoro-luminescence imaging.
Uniting photothermal therapy (PTT) with magnetic resonance imaging (MRI) holds great potential in nanotheranostics. However, the extensively utilized hydrophobicity-driven assembling strategy not only restricts the intramolecular motion-induced PTT, but also blocks the interactions between MR agents and water. Herein, we report an aggregation-induced emission luminogen (AIEgen)-mediated polyelectrolyte nanoassemblies (APN) strategy, which bestows a unique "soft" inner microenvironment with good water permeability. Femtosecond transient spectra verify that APN well activates intramolecular motion from the twisted intramolecular charge transfer process. This de novo APN strategy uniting synergistically three factors (rotational motion, local motion, and hydration number) brings out high MR relaxivity. For the first time, APN strategy has successfully modulated both intramolecular motion and magnetic relaxivity, achieving fluorescence lifetime imaging of tumor spheroids and spatio-temporal MRI-guided high-efficient PTT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.