Wing polyphenism is an evolutionarily successful feature found in a wide range of insects. Long-winged morphs can fly, which allows them to escape adverse habitats and track changing resources, whereas short-winged morphs are flightless, but usually possess higher fecundity than the winged morphs. Studies on aphids, crickets and planthoppers have revealed that alternative wing morphs develop in response to various environmental cues, and that the response to these cues may be mediated by developmental hormones, although research in this area has yielded equivocal and conflicting results about exactly which hormones are involved. As it stands, the molecular mechanism underlying wing morph determination in insects has remained elusive. Here we show that two insulin receptors in the migratory brown planthopper Nilaparvata lugens, InR1 and InR2, have opposing roles in controlling long wing versus short wing development by regulating the activity of the forkhead transcription factor Foxo. InR1, acting via the phosphatidylinositol-3-OH kinase (PI(3)K)-protein kinase B (Akt) signalling cascade, leads to the long-winged morph if active and the short-winged morph if inactive. InR2, by contrast, functions as a negative regulator of the InR1-PI(3)K-Akt pathway: suppression of InR2 results in development of the long-winged morph. The brain-secreted ligand Ilp3 triggers development of long-winged morphs. Our findings provide the first evidence of a molecular basis for the regulation of wing polyphenism in insects, and they are also the first demonstration--to our knowledge--of binary control over alternative developmental outcomes, and thus deepen our understanding of the development and evolution of phenotypic plasticity.
Conspectus The common existence of hypoxia in solid tumors has been heavily researched because it renders tumors more resistant to most standard therapeutic methods, such as radiotherapy (RT), chemotherapy, and photodynamic therapy (PDT), and is associated with a more malignant phenotype and poor survival in patients with tumors. The development of hypoxia modulation methods for advanced therapeutic activity is therefore of great interest but remains a considerable challenge. Since the significant development of nanotechnology and nanomedicine, functionalized nanomaterials can be exploited as adjuvant “drugs” for these oxygen-dependent standard therapies or as hypoxia initiators for advanced new therapies to solid tumors. In this Account, we summarize our recent studies on the design and synthesis of nanomaterials with a set of desired chemistry benefits achievable by modulating hypoxia, suggesting a valid therapeutic option for tumors. The investigated strategies can be categorized into three groups: The first strategy is based on countering hypoxia. Considering that O2 deficiency is the major obstacle for the oxygen-dependent therapies, we initially developed methods to supply O2 by taking advantage of the hypoxia-responsive properties of nano-MnO2 or nanomaterials’ photothermal effects for increased intratumoral blood flow. The second approach is to disregard hypoxia. Possible benefits of nanoagents include reducing/eliminating reliance on O2 or making O2 replacements as adjuvants to standard therapies. To this end, we investigated a nano-upconversion/scintillator with the capacity toup-/down-convert near-infrared light (NIR)/X-ray to luminescence in the ultraviolet/visible region fortype-I PDT with minimized oxygen-tension dependency or developed Fe-based nanomaterials for chemodynamic therapy (CDT) without external energy and oxygen participation for efficient free radical killing of deep tumors. The third strategy involves exploiting hypoxia. The unique biological characteristics of hypoxia are exploited to activate nanoagents for new therapies. To address the discrepancy between the nanoagents’ demand and supply within the hypoxia region, a smart “molecule–nano” medicine that stays small-molecule-like in the bloodstream and turns into self-assembled nanovesicles after entry into the hypoxia region was constructed for hypoxia-adaptive photothermal therapy (PTT). In addition to traditional anti-angiogenesis therapy, we prepared Mg2Si nanoparticles by a special self-propagating high-temperature synthesis approach. These nanoparticles can directly remove the intratumoral oxygen via the oxidation reactions of Mg2Si and later efficiently block the rapid reoxygenation via tumor blood vessels by the resultant SiO2 microsheets for cancer starvation therapy. Taken together, these findings indicate that nanomaterials will assume a valuable role for anticancer exploration based on either their properties to make up oxygen deficiency or the use of hypoxia for therapeutic applications.
Despite the ubiquitous distributions and critical ecological functions of microorganisms in pedogenesis and ecosystem development in recently deglaciated areas, there are contrasting successional trajectories among bacteria and fungi, but the driving forces of community assembly still remain poorly resolved. In this study, we analyzed both bacterial and fungal lineages associated with seven different stages in the Hailuogou Glacier Chronosequence, to quantify their taxonomic composition and successional dynamics, and to decipher the relative contribution from the bottom-up control of soil nutrients and altered vegetation as well as top-down pressures from nematode grazers. Co-occurrence networks showed that the community complexity for both bacteria and fungi typically peaked at the middle chronosequence stages. The overlapping nodes mainly belonged to Proteobacteria and Acidobacteria in bacteria, and Ascomycota and Basidiomycota in fungi, which was further supported by the indicator species analysis. Variation in partitioning and structural equation modeling suggested that edaphic properties were the primary agents shaping microbial community structures, especially at the early stages. The importance of biotic factors, including plant richness and nematode feeding, increased during the last two stages along with the establishment of a coniferous forest, eventually governing the turnover of fungal communities. Moreover, bacterial communities exhibited a more compact network topology during assembly, thus supporting determinism, whereas the looser clustering of fungal communities illustrated that they were determined more by stochastic processes. These pieces of evidence collectively reveal divergent successional trajectories and driving forces for soil bacterial and fungal communities along a glacier forefield chronosequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.