Mural painting is the art on the wall, it is the painting that people draw on the wall, it is one of the earliest forms of painting in human history, and it is also an accessory part of the building. The decorative and beautifying functions of murals make them an important aspect of environmental art. Cloud edge computing is a combination of cloud computing and edge computing, that fully absorbs the advantages of both cloud computing and edge computing and maximizes their advantages. In this study, based on cloud edge computing and digital technology, the automatic identification and repair system of fresco image cracks is studied. Image segmentation techniques have been proposed in this study, using 60 murals in three regions as experimental objects. Through experimental analysis, it is found that the traditional pine poise treatment method takes the shortest repair time. However, for a specific image, it is difficult to guarantee the quality of its restoration. The mural image in area A was repaired with the conventional pine pitch repair method, which took 113.01 seconds, and the subjective evaluation was 69 points. Using the repair method described in this study to repair, it takes 127.38 seconds, and its subjective evaluation score is the highest, which is 87 points. The experimental results have shown that the cloud edge computing method and digital technology have had a certain positive effect on the identification and repair system of fresco image cracks.
This research proposes a virtual restoration system and method for 3D digital cultural relics based on a fuzzy logic algorithm, aiming to solve the problems of the low classification accuracy and poor splicing effect of Terra Cotta Warrior fragments. This method adopts a series of steps to improve the efficiency and accuracy of fragment splicing. Firstly, features such as curvature, torsion, and left and right chord lengths were extracted from the fracture surface contour lines of the cultural relic fragments to form feature vectors. Then, the feature vector was fused and compressed by using the multilayer perceptron. The multilayer perceptron is a neural network model that can process and learn input data via multiple levels of computation, resulting in more expressive feature representations. Next, we used the calculation results of the multilayer perceptron to perform the splicing operation on the fragments. This means that, based on the calculation results of the feature vectors, the system can automatically select appropriate splicing methods to accurately match and splice fragments. Finally, by adjusting the weight of the multilayer perceptron, the error rate of fragment splicing can be reduced, further improving the accuracy of repair. The experimental results show that the method proposed in this article is significantly better than traditional methods in terms of time consumption and can effectively improve the efficiency of fragment matching and stitching. Conclusion: The fragment-stitching algorithm based on multi-feature adaptive fusion improved the speed and effectiveness of stitching in fragment-stitching tasks. In summary, the fragment-stitching algorithm based on multi-feature adaptive fusion can improve the speed and effectiveness of stitching in fragment-stitching tasks. The application of this method is expected to play an important role in the field of cultural relic protection, such as the restoration of Terra Cotta Warrior fragments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.