This paper is focused on the analysis of effects of mistuning on the forced response of gas turbine engine bladed disks vibrating in the frequency ranges corresponding to higher modes. For high modes considered here, the blade aerofoils are deformed during vibrations and the blade mode shapes differ significantly from beam mode shapes. A model reduction technique is developed for the computationally efficient and accurate analysis of forced response for bladed disks vibrating in high-frequency ranges. The high-fidelity finite element (FE) model of a tuned bladed disk sector is used to provide primary information about dynamic properties of a bladed disk, and the blade mistuning is modeled by specially defined mistuning matrices. The forced response displacement and stress amplitude levels are studied. The effects of different types of mistuning are examined, and the existence of high amplifications of mistuned forced response levels is shown for high-mode vibrations: in some cases, the resonance peak response of a tuned structure can be lower than out-of-resonance amplitudes of its mistuned counterpart.
This paper is focused on the analysis of effects of mistuning on the forced response of gas-turbine bladed discs vibrating in the frequency ranges corresponding to higher modes. For high modes the blade aerofoils are deformed during vibrations and the blade mode shapes differ significantly from beam mode shapes. A model reduction technique is developed for the computationally efficient and accurate analysis of forced response for bladed discs vibrating in high frequency ranges. High-fidelity finite element models of a tuned bladed disc sector are used to provide primary information about dynamic properties of a bladed disc and the blade mistuning is modelled by specially defined mistuning matrices. The forced response displacement and stress amplitude levels are studied for high frequency ranges. The effects of different types of mistuning are examined and the existence of high amplifications of mistuned forced response levels is shown for high-mode vibrations: in some cases, the resonance peak response of a tuned structure can be lower than out-of-resonance amplitudes of its mistuned counterpart.
This paper proposes an effective method for sensitivity analysis of forced response of bladed discs to blade mistuning. The numerical studies of forced response of a turbine bladed disc vibrating in the frequency ranges corresponding to resonances with higher modes are also presented. The blade mistuning is modelled by specially defined mistuning matrices used for simulating experimentally measured scatter of blade natural frequencies. Based on this method, the sensitivity of forced response amplitude levels are studied for displacements and stress levels for a realistic model of a bladed disc. The effective response surface techniques are developed for explicit representation of the mistuned forced response as a function of blade mistuning elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.