Although coronary artery recanalization after myocardial infarction improves patient outcomes, inadequate ventricular remodeling following ischemia-reperfusion (IR) injury and secondary cardiac fibrosis (CF) are common and can lead to heart failure. MicroRNAs (miRNAs) play an important role in cardiovascular disorders. However, the underlying molecular mechanism of miRNAs in the occurrence and progression of CF has not been fully elucidated. Herein, through the construction of an I/R rat model and an angiotensin II-induced CF cell model, we evaluated the role of miR-375-3p in the progression of CF. In the I/R rat model and CF cell model, miR-375-3p promoted fibrosis by accelerating the ferroptosis of cardiomyocytes through mediating glutathione peroxidase 4 (GPX4). Furthermore, we treated the rats or cell model with miR-375-3p antagomir (or inhibitor) and ferroptosis inhibitor Ferrostatin-1 (Fer-1). The results showed that miR-375-3p antagomir (or inhibitor) and Fer-1 promoted the antioxidant capacity of cardiac fibroblasts, reduced GPX4-mediated ferroptosis process and alleviated I/R-induced CF. In conclusion, this study revealed that miR-375-3p directly targeted GPX4—an inhibitor of the ferroptosis pathway. Meanwhile, miR-375-3p can be a new potential biomarker for the prevention and treatment of CF.
Hyperlipidemia has been shown to stimulate vascular smooth muscle cell (VSMC) proliferation. Wnt signaling pathway plays a critical role in embryonic development and cell proliferation. In this study, Sprague-Dawley rats fed with high-fat or normal diet for 12 weeks were sacrificed, and the thoracic aorta was harvested to determine wnt3a, β-catenin, T-cell factor 4 (TCF4), and cyclin D1 expressions. VSMC proliferation within thoracic aorta and lipid accumulation within VSMCs were detected. Rat aortic VSMCs were cultured in serum from rats with hyperlipidemia or DKK-1; Wnt3a, β-catenin, TCF4, and cyclin D1 expressions, and cell cycle distribution were determined. The findings demonstrated that increased number of VSMCs, lipid droplets, and vacuoles within thoracic aorta in the high-fat-fed group. Compared with controls, VSMCs from high-fat-fed rats showed higher mRNA expressions of wnt3a, β-catenin, TCF4, and cyclin D1, as well as in VSMCs cultured with hyperlipidemic serum. After 24 h, VSMCs stimulated with hyperlipidemic serum showed significantly increased cell number and S-phase entry compared with cells exposed to normolipidemic serum. These effects were blocked by DKK-1. These results suggest that Wnt/β-catenin signaling plays an important role in hyperlipidemia-induced VSMC proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.