Dual-rotor permanent magnet motor has the characteristics of high torque density and high efficiency and has a wide range of application prospects in many fields. However, the double air-gap structure also makes the internal magnetic field distribution more complicated and torque fluctuation more serious. To improve the double-layer air-gap magnetic field distribution and reduced torque pulsation, based on the Halbach array magnetization, the inner and outer irregular Halbach array dualrotor permanent magnet motor model was established to obtain the ideal one-sided magnetic field. By comparing the magnetic field distribution of the inner and outer layers, the no-load back-EMF, and the cogging torque, it is proved that the motor with the proposed structure can optimize the air-gap magnetic density and no-load back-EMF and reduce the cogging torque; at the same time, the torque ripple is also significantly reduced to ensure the stability of the motor operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.