High-mobility group box 1 (HMGB1), a nuclear protein that has endogenous cytokine-like activity, is involved in several neurological diseases by mediating inflammatory response. In this study, a lateral head rotation device was used to establish a rat diffuse axonal injury (DAI) model. The dynamic expression of HMGB1, apoptosis-associated proteins, and proinflammatory cytokines were detected by Western blot, and neuronal apoptosis was observed by TUNEL staining. The extracellular release of HMGB1 and the accumulation of β-APP were observed by immunofluorescence and immunohistochemistry, respectively. The brain injury was indicated by modified neurological severity score (mNSS), brain water content (BWC), and the extravasation of Evans blue. We showed that HMGB1 level obviously decreased within 48 h after DAI, accompanied by neuronal apoptosis, the activation of caspases 3 and 9, and the phosphorylation of BCL-2. Inhibiting HMGB1 with glycyrrhizic acid (GL) can suppress the activation of apoptosis-associated proteins and inhibit the expression of proinflammatory cytokines, which ameliorated motor and cognitive deficits, reduced neuronal apoptosis, and protected the integrity of blood brain barrier (BBB) and axonal injury after experimental DAI in rats. Thus, HMGB1 may be involved in the inflammatory response after DAI, and inhibition of HMGB1 release with GL can notably alleviate the brain injury after DAI.
AbstractThe blood-brain barrier (BBB) is a protective structure that helps maintaining the homeostasis in cerebral microenvironment by limiting the passage of molecules into the brain. BBB is formed by closely conjugated endothelial cells, with astrocytic endfeet surrounded and extracellular matrix (ECM) consolidated. Numerous neurological diseases can cause disturbance of BBB, leading to brain edema and neurological dysfunctions. The low-density lipoprotein (LDL) receptor–related protein 1 (LRP-1), a member of the LDL receptor gene family, is involved in a lot of important processes in the brain under both physiological and pathological conditions. As a membrane receptor, LRP-1 interacts with a variety of ligands and mediates the internalization of several important substances. LRP-1 is found responsible for inducing the opening of BBB following ischemic attack. It has also been reported that LRP-1 regulates several tight junction proteins and mediates the clearance of major ECM-degrading proteinases. In this review, we briefly discussed the role of LRP-1 in regulating BBB integrity by modulating tight junction proteins, endothelial cells and the remodeling of ECM.
Increasing evidence suggests that secondary injury after diffuse axonal injury (DAI) damages more axons than the initial insult, but the underlying mechanisms of this phenomenon are not fully understood. Recent studies show that toll-like receptor 4 (TLR4) plays a critical role in promoting adaptive immune responses and have been shown to be associated with brain damage. The purpose of this study was to investigate the role of the TLR4 signalling pathway in secondary axonal injury in the cortices of DAI rats. TLR4 was mainly localized in microglial cells and neurons, and the levels of TLR4 downstream signalling molecules, including TLR4, myeloid differentiation primary response gene 88, toll/IR-1-(TIR-) domain-containing adaptor protein inducing interferon-beta, interferon regulatory factor 3, interferon β, nuclear factor κB (NF-κB) p65, and phospho-NF-κB p65, significantly increased and peaked at 1 d after DAI. Inhibition of TLR4 by TAK-242 attenuated apoptosis, neuronal and axonal injury, and glial responses. The neuroprotective effects of TLR4 inhibition were associated with decreases in the levels of TLR4 downstream signalling molecules and inflammatory factors, including interleukin-1β, interleukin-6, and tumour necrosis factor-α. These results suggest that the TLR4 signalling pathway plays an important role in secondary injury and may be an important therapeutic target following DAI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.