Second-order Volterra integro-differential equation is solved by the linear barycentric rational collocation method. Following the barycentric interpolation method of Lagrange polynomial and Chebyshev polynomial, the matrix form of the collocation method is obtained from the discrete Volterra integro-differential equation. With the help of the convergence rate of the linear barycentric rational interpolation, the convergence rate of linear barycentric rational collocation method for solving Volterra integro-differential equation is proved. At last, several numerical examples are provided to validate the theoretical analysis.
The linear barycentric rational collocation method for solving heat conduction equation is presented. The matrix form of discrete heat conduction equation by collocation method is also obtained. With the help of convergence rate of the barycentric interpolation, the convergence rate of linear barycentric rational collocation method for solving heat conduction equation is proved. At last, several numerical examples are provided to validate the theoretical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.