Density functional theory calculations confirmed the bond-order-length-strength (BOLS) predictions regarding the local bond length, bond energy and electron binding energy (BE) of Na atomic clusters and shell-resolved monolayer skins. A reproduction of the photoelectron spectroscopic measurements leads to the following observations: (i) local lattice maximal strain of 12.67%, (ii) BE density of 71.92%, (iii) atomic cohesive energy drops to 62.31% and (iv) the 2p core-level shifts deeper by 2.749 eV for undercoordinated Na atoms. This information helps in understanding the unusual behaviour of the undercoordinated Na solid skins and atomic clusters.This journal is
We examined the effects of atomic hetero- and under-coordination on the relaxation of the interatomic bonding and electronic binding energy of Li and LiNa cluster alloying using a combination of the bond-order-length-strength correlation and density functional theory calculations. We found that bond nature alteration by heterocoordination, bond relaxation by thermal excitation and atomic coordination contribute intrinsically to the core-level energy shifts with resolution of the binding energy at the atomic sites of terrace edges, facets, and bulk of the LiNa alloy nanoclusters. Our strategies may simplify the complexity of core electron binding energies in analyzing the experimental data of the irregularly coordinating atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.